IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v13y2025i15p2453-d1713055.html
   My bibliography  Save this article

Prediction of China’s Silicon Wafer Price: A GA-PSO-BP Model

Author

Listed:
  • Jining Wang

    (School of Economics and Management, Nanjing Tech University, Nanjing 211816, China)

  • Hui Chen

    (School of Economics and Management, Nanjing Tech University, Nanjing 211816, China)

  • Lei Wang

    (School of Economics and Management, Nanjing Tech University, Nanjing 211816, China)

Abstract

The BP (Back-Propagation) neural network model (hereafter referred to as the BP model) often gets stuck in local optima when predicting China’s silicon wafer price, which hurts the accuracy of the forecasts. This study addresses the issue by enhancing the BP model. It integrates the principles of genetic algorithm (GA) with particle swarm optimization (PSO) to develop a new model called the GA-PSO-BP. This study also considers the material price from both the supply and demand sides of the photovoltaic industry. These prices are important factors in China’s silicon wafer price prediction. This research indicates that improving the BP model by integrating GA allows for a broader exploration of potential solution spaces. This approach helps to prevent local minima and identify the optimal solution. The BP model converges more quickly by using PSO for weight initialization. Additionally, the method by which particles share information decreases the probability of being confined to local optima. The upgraded GA-PSO-BP model demonstrates improved generalization capabilities and makes more accurate predictions. The MAE (Mean Absolute Error) value of the GA-PSO-BP model is 31.01% lower than those of the standalone BP model and also falls by 19.36% and 16.28% relative to the GA-BP and PSO-BP models, respectively. The smaller the value, the closer the prediction result of the model is to the actual value. This model has proven effective and superior in China’s silicon wafer price prediction. This capability makes it an essential resource for market analysis and decision-making within the silicon wafer industry.

Suggested Citation

  • Jining Wang & Hui Chen & Lei Wang, 2025. "Prediction of China’s Silicon Wafer Price: A GA-PSO-BP Model," Mathematics, MDPI, vol. 13(15), pages 1-19, July.
  • Handle: RePEc:gam:jmathe:v:13:y:2025:i:15:p:2453-:d:1713055
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/13/15/2453/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/13/15/2453/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Tej Bahadur Shahi & Ashish Shrestha & Arjun Neupane & William Guo, 2020. "Stock Price Forecasting with Deep Learning: A Comparative Study," Mathematics, MDPI, vol. 8(9), pages 1-15, August.
    2. Lago, Jesus & De Ridder, Fjo & De Schutter, Bart, 2018. "Forecasting spot electricity prices: Deep learning approaches and empirical comparison of traditional algorithms," Applied Energy, Elsevier, vol. 221(C), pages 386-405.
    3. Liu, Jicheng & Lin, Xiangmin, 2019. "Empirical analysis and strategy suggestions on the value-added capacity of photovoltaic industry value chain in China," Energy, Elsevier, vol. 180(C), pages 356-366.
    4. Peng, Yanni & Xiang, Wanli, 2020. "Short-term traffic volume prediction using GA-BP based on wavelet denoising and phase space reconstruction," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 549(C).
    5. Liu, Jia-Bao & Zheng, Ya-Qian & Lee, Chien-Chiang, 2024. "Statistical analysis of the regional air quality index of Yangtze River Delta based on complex network theory," Applied Energy, Elsevier, vol. 357(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shao, Zhen & Zheng, Qingru & Yang, Shanlin & Gao, Fei & Cheng, Manli & Zhang, Qiang & Liu, Chen, 2020. "Modeling and forecasting the electricity clearing price: A novel BELM based pattern classification framework and a comparative analytic study on multi-layer BELM and LSTM," Energy Economics, Elsevier, vol. 86(C).
    2. Tej Bahadur Shahi & Chiranjibi Sitaula & Arjun Neupane & William Guo, 2022. "Fruit classification using attention-based MobileNetV2 for industrial applications," PLOS ONE, Public Library of Science, vol. 17(2), pages 1-21, February.
    3. Chaojun Wang & Shulin Huang & Cheng Zhang, 2025. "Short-Term Traffic Flow Prediction Considering Weather Factors Based on Optimized Deep Learning Neural Networks: Bo-GRA-CNN-BiLSTM," Sustainability, MDPI, vol. 17(6), pages 1-20, March.
    4. Erik Heilmann & Janosch Henze & Heike Wetzel, 2021. "Machine learning in energy forecasts with an application to high frequency electricity consumption data," MAGKS Papers on Economics 202135, Philipps-Universität Marburg, Faculty of Business Administration and Economics, Department of Economics (Volkswirtschaftliche Abteilung).
    5. Wang, Delu & Gan, Jun & Mao, Jinqi & Chen, Fan & Yu, Lan, 2023. "Forecasting power demand in China with a CNN-LSTM model including multimodal information," Energy, Elsevier, vol. 263(PE).
    6. Umut Ugurlu & Ilkay Oksuz & Oktay Tas, 2018. "Electricity Price Forecasting Using Recurrent Neural Networks," Energies, MDPI, vol. 11(5), pages 1-23, May.
    7. Joseph Nyangon & Ruth Akintunde, 2024. "Anomaly Detection in California Electricity Price Forecasting: Enhancing Accuracy and Reliability Using Principal Component Analysis," Papers 2412.07787, arXiv.org.
    8. Tomasz Serafin & Bartosz Uniejewski & Rafał Weron, 2019. "Averaging Predictive Distributions Across Calibration Windows for Day-Ahead Electricity Price Forecasting," Energies, MDPI, vol. 12(13), pages 1-12, July.
    9. Namrye Son, 2021. "Comparison of the Deep Learning Performance for Short-Term Power Load Forecasting," Sustainability, MDPI, vol. 13(22), pages 1-25, November.
    10. Galarneau-Vincent, Rémi & Gauthier, Geneviève & Godin, Frédéric, 2023. "Foreseeing the worst: Forecasting electricity DART spikes," Energy Economics, Elsevier, vol. 119(C).
    11. Karol Pilot & Alicja Ganczarek-Gamrot & Krzysztof Kania, 2024. "Dealing with Anomalies in Day-Ahead Market Prediction Using Machine Learning Hybrid Model," Energies, MDPI, vol. 17(17), pages 1-20, September.
    12. Maria A. Franco & Stefan N. Groesser, 2021. "A Systematic Literature Review of the Solar Photovoltaic Value Chain for a Circular Economy," Sustainability, MDPI, vol. 13(17), pages 1-35, August.
    13. Emil Kraft & Dogan Keles & Wolf Fichtner, 2020. "Modeling of frequency containment reserve prices with econometrics and artificial intelligence," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 39(8), pages 1179-1197, December.
    14. Díaz, Guzmán & Coto, José & Gómez-Aleixandre, Javier, 2019. "Prediction and explanation of the formation of the Spanish day-ahead electricity price through machine learning regression," Applied Energy, Elsevier, vol. 239(C), pages 610-625.
    15. Ahl, A. & Yarime, M. & Goto, M. & Chopra, Shauhrat S. & Kumar, Nallapaneni Manoj. & Tanaka, K. & Sagawa, D., 2020. "Exploring blockchain for the energy transition: Opportunities and challenges based on a case study in Japan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 117(C).
    16. Wuyue An & Lin Wang & Dongfeng Zhang, 2023. "Comprehensive commodity price forecasting framework using text mining methods," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(7), pages 1865-1888, November.
    17. Jun Yuan & Jiang Zhu & Victor Nian, 2020. "Neural Network Modeling Based on the Bayesian Method for Evaluating Shipping Mitigation Measures," Sustainability, MDPI, vol. 12(24), pages 1-14, December.
    18. Norjiah Muslim & Rosita Binti Hussin & Fatin Fasihah Binti Johari, 2025. "From Data To Decision: Empowering Companies and Investors With Hybrid AI Stock Prediction Method," International Journal of Research and Innovation in Social Science, International Journal of Research and Innovation in Social Science (IJRISS), vol. 9(6), pages 561-573, June.
    19. Fei Qu & Yi-Ting Wang & Wen-Hui Hou & Xiao-Yu Zhou & Xiao-Kang Wang & Jun-Bo Li & Jian-Qiang Wang, 2022. "Forecasting of Automobile Sales Based on Support Vector Regression Optimized by the Grey Wolf Optimizer Algorithm," Mathematics, MDPI, vol. 10(13), pages 1-22, June.
    20. Zhong, Wei & Huang, Wei & Lin, Xiaojie & Li, Zhongbo & Zhou, Yi, 2020. "Research on data-driven identification and prediction of heat response time of urban centralized heating system," Energy, Elsevier, vol. 212(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:13:y:2025:i:15:p:2453-:d:1713055. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.