IDEAS home Printed from https://ideas.repec.org/a/bcp/journl/v9y2025issue-6p561-573.html
   My bibliography  Save this article

From Data To Decision: Empowering Companies and Investors With Hybrid AI Stock Prediction Method

Author

Listed:
  • Norjiah Muslim

    (Faculty of Business and Accountancy, Universiti Selangor, Malaysia)

  • Rosita Binti Hussin

    (Faculty of Business and Accountancy, Universiti Selangor, Malaysia)

  • Fatin Fasihah Binti Johari

    (Faculty of Business and Accountancy, Universiti Selangor, Malaysia)

Abstract

This research presents a hybrid Artificial Intelligence (AI) model for stock price prediction, combining several advanced techniques to enhance the accuracy and reliability of financial forecasting. The model integrates neural network methods such artificial Neural Networks (ANN), in conjunction with a sliding window approach and hierarchical clustering. The sliding window method segments historical stock data into fixed intervals, enabling the model to detect localized temporal trends, while hierarchical clustering groups similar historical patterns to improve forecasting relevance. A comprehensive literature review was conducted to evaluate existing hybrid AI approaches and identify research gaps. Feature selection was performed using stepwise regression and leverage analysis to refine the dataset before model training. The hybrid model demonstrated superior performance compared to traditional methods, based on evaluation metrics such as RMSE and MAE, both in backtesting and real-time simulation scenarios. The results confirm the model’s ability to generate timely and accurate predictions, supporting more informed investment decisions. This study also recommends future enhancements such as sentiment analysis integration, broader market validation, and real-time deployment capabilities, affirming the strong potential of hybrid AI models in financial forecasting.

Suggested Citation

  • Norjiah Muslim & Rosita Binti Hussin & Fatin Fasihah Binti Johari, 2025. "From Data To Decision: Empowering Companies and Investors With Hybrid AI Stock Prediction Method," International Journal of Research and Innovation in Social Science, International Journal of Research and Innovation in Social Science (IJRISS), vol. 9(6), pages 561-573, June.
  • Handle: RePEc:bcp:journl:v:9:y:2025:issue-6:p:561-573
    as

    Download full text from publisher

    File URL: https://www.rsisinternational.org/journals/ijriss/Digital-Library/volume-9-issue-6/561-573.pdf
    Download Restriction: no

    File URL: https://rsisinternational.org/journals/ijriss/articles/from-data-to-decision-empowering-companies-and-investors-with-hybrid-ai-stock-prediction-method/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jilin Zhang & Lishi Ye & Yongzeng Lai, 2023. "Stock Price Prediction Using CNN-BiLSTM-Attention Model," Mathematics, MDPI, vol. 11(9), pages 1-18, April.
    2. Taewook Kim & Ha Young Kim, 2019. "Forecasting stock prices with a feature fusion LSTM-CNN model using different representations of the same data," PLOS ONE, Public Library of Science, vol. 14(2), pages 1-23, February.
    3. Sidra Mehtab & Jaydip Sen, 2019. "A Robust Predictive Model for Stock Price Prediction Using Deep Learning and Natural Language Processing," Papers 1912.07700, arXiv.org.
    4. Tej Bahadur Shahi & Ashish Shrestha & Arjun Neupane & William Guo, 2020. "Stock Price Forecasting with Deep Learning: A Comparative Study," Mathematics, MDPI, vol. 8(9), pages 1-15, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tej Bahadur Shahi & Chiranjibi Sitaula & Arjun Neupane & William Guo, 2022. "Fruit classification using attention-based MobileNetV2 for industrial applications," PLOS ONE, Public Library of Science, vol. 17(2), pages 1-21, February.
    2. Huang, Wenyang & Zhao, Jianyu & Wang, Xiaokang, 2024. "Model-driven multimodal LSTM-CNN for unbiased structural forecasting of European Union allowances open-high-low-close price," Energy Economics, Elsevier, vol. 132(C).
    3. Jaydip Sen & Sidra Mehtab & Abhishek Dutta & Saikat Mondal, 2022. "Precise Stock Price Prediction for Optimized Portfolio Design Using an LSTM Model," Papers 2203.01326, arXiv.org.
    4. Sidra Mehtab & Jaydip Sen & Subhasis Dasgupta, 2020. "Robust Analysis of Stock Price Time Series Using CNN and LSTM-Based Deep Learning Models," Papers 2011.08011, arXiv.org, revised Jan 2021.
    5. Jaydip Sen & Sidra Mehtab, 2021. "Design and Analysis of Robust Deep Learning Models for Stock Price Prediction," Papers 2106.09664, arXiv.org.
    6. Jaydip Sen, 2022. "Designing Efficient Pair-Trading Strategies Using Cointegration for the Indian Stock Market," Papers 2211.07080, arXiv.org.
    7. Shu Tang & Dongphil Chun & Xuhui Liu, 2025. "An Applied Study on Predicting Natural Gas Prices Using Mixed Models," Energies, MDPI, vol. 18(19), pages 1-22, October.
    8. Paul Handro & Bogdan Dima, 2024. "Analyzing Financial Markets Efficiency: Insights from a Bibliometric and Content Review," Journal of Financial Studies, Institute of Financial Studies, vol. 16(9), pages 119-175, May.
    9. Peng, Shiliang & Fan, Lin & Zhang, Li & Su, Huai & He, Yuxuan & He, Qian & Wang, Xiao & Yu, Dejun & Zhang, Jinjun, 2024. "Spatio-temporal prediction of total energy consumption in multiple regions using explainable deep neural network," Energy, Elsevier, vol. 301(C).
    10. Ergenç Cansu & Aktaş Rafet, 2025. "A Supervised Machine Learning in Financial Forecasting: Identifying Effective Models for the BIST100 Index," Review of Economic Perspectives, Sciendo, vol. 25(1), pages 66-90.
    11. Jaydip Sen & Abhishek Dutta & Sidra Mehtab, 2021. "Profitability Analysis in Stock Investment Using an LSTM-Based Deep Learning Model," Papers 2104.06259, arXiv.org.
    12. Tashreef Muhammad & Tahsin Aziz & Mohammad Shafiul Alam, 2023. "Utilizing Technical Data to Discover Similar Companies in Dhaka Stock Exchange," Papers 2301.04455, arXiv.org.
    13. Qizhao Chen & Hiroaki Kawashima, 2025. "Adaptive Alpha Weighting with PPO: Enhancing Prompt-Based LLM-Generated Alphas in Quant Trading," Papers 2509.01393, arXiv.org.
    14. Akash Doshi & Alexander Issa & Puneet Sachdeva & Sina Rafati & Somnath Rakshit, 2020. "Deep Stock Predictions," Papers 2006.04992, arXiv.org.
    15. Harsimrat Kaeley & Ye QIAO & Nader BAGHERZADEH, 0000. "Support for Stock Trend Prediction Using Transformers and Sentiment Analysis," Proceedings of Economics and Finance Conferences 13815878, International Institute of Social and Economic Sciences.
    16. Sidra Mehtab & Jaydip Sen, 2020. "Stock Price Prediction Using Convolutional Neural Networks on a Multivariate Timeseries," Papers 2001.09769, arXiv.org.
    17. Andrew Brim & Nicholas S Flann, 2022. "Deep reinforcement learning stock market trading, utilizing a CNN with candlestick images," PLOS ONE, Public Library of Science, vol. 17(2), pages 1-25, February.
    18. Zhiyuan Pei & Jianqi Yan & Jin Yan & Bailing Yang & Ziyuan Li & Lin Zhang & Xin Liu & Yang Zhang, 2024. "A Stock Price Prediction Approach Based on Time Series Decomposition and Multi-Scale CNN using OHLCT Images," Papers 2410.19291, arXiv.org, revised Oct 2024.
    19. Ilia Zaznov & Julian Kunkel & Alfonso Dufour & Atta Badii, 2022. "Predicting Stock Price Changes Based on the Limit Order Book: A Survey," Mathematics, MDPI, vol. 10(8), pages 1-33, April.
    20. Yonghong Li & Zhixian Li & Yuting Chen & Yayun Wang & Sidong Xian & Zhiqiang Zhao & Linyan Zhou & Ji Li, 2025. "MLBGK: A Novel Feature Fusion Model for Forecasting Stocks Prices," Computational Economics, Springer;Society for Computational Economics, vol. 66(3), pages 2565-2592, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bcp:journl:v:9:y:2025:issue-6:p:561-573. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Dr. Pawan Verma (email available below). General contact details of provider: https://rsisinternational.org/journals/ijriss/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.