IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2301.04455.html

Utilizing Technical Data to Discover Similar Companies in Dhaka Stock Exchange

Author

Listed:
  • Tashreef Muhammad
  • Tahsin Aziz
  • Mohammad Shafiul Alam

Abstract

Stock market investment have been an ideal form of investment for many years. Investing capitals smartly in stock market yields high profit returns. But there are many companies available in a market. Currently there are more than $345$ active companies who have stocks in Dhaka Stock Exchange (DSE). Analyzing all these companies is quite impossible. However, many companies tend to move together. This study aims at finding which companies in DSE have a close connection and move alongside each other. By analyzing this relation, the investors and traders will be able to analyze a lot of companies' statistics from a calculating just a handful number of companies. The conducted experiment yielded promising results. It was found that though the system was not given anything other than technical data, it was able to identify companies that show domain specific outcomes. In other words, a relation between technical data and fundamental data was discovered from the conducted experiment.

Suggested Citation

  • Tashreef Muhammad & Tahsin Aziz & Mohammad Shafiul Alam, 2023. "Utilizing Technical Data to Discover Similar Companies in Dhaka Stock Exchange," Papers 2301.04455, arXiv.org.
  • Handle: RePEc:arx:papers:2301.04455
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2301.04455
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Tashreef Muhammad & Anika Bintee Aftab & Md. Mainul Ahsan & Maishameem Meherin Muhu & Muhammad Ibrahim & Shahidul Islam Khan & Mohammad Shafiul Alam, 2022. "Transformer-Based Deep Learning Model for Stock Price Prediction: A Case Study on Bangladesh Stock Market," Papers 2208.08300, arXiv.org.
    2. Taewook Kim & Ha Young Kim, 2019. "Forecasting stock prices with a feature fusion LSTM-CNN model using different representations of the same data," PLOS ONE, Public Library of Science, vol. 14(2), pages 1-23, February.
    3. Eduardo Ramos-P'erez & Pablo J. Alonso-Gonz'alez & Jos'e Javier N'u~nez-Vel'azquez, 2021. "Multi-Transformer: A New Neural Network-Based Architecture for Forecasting S&P Volatility," Papers 2109.12621, arXiv.org.
    4. Szczepocki Piotr, 2019. "Clustering Companies Listed on the Warsaw Stock Exchange According to Time-Varying Beta," Econometrics. Advances in Applied Data Analysis, Sciendo, vol. 23(2), pages 63-79, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Huang, Wenyang & Zhao, Jianyu & Wang, Xiaokang, 2024. "Model-driven multimodal LSTM-CNN for unbiased structural forecasting of European Union allowances open-high-low-close price," Energy Economics, Elsevier, vol. 132(C).
    2. Paul Handro & Bogdan Dima, 2024. "Analyzing Financial Markets Efficiency: Insights from a Bibliometric and Content Review," Journal of Financial Studies, Institute of Financial Studies, vol. 16(9), pages 119-175, May.
    3. Peng, Shiliang & Fan, Lin & Zhang, Li & Su, Huai & He, Yuxuan & He, Qian & Wang, Xiao & Yu, Dejun & Zhang, Jinjun, 2024. "Spatio-temporal prediction of total energy consumption in multiple regions using explainable deep neural network," Energy, Elsevier, vol. 301(C).
    4. Ergenç Cansu & Aktaş Rafet, 2025. "A Supervised Machine Learning in Financial Forecasting: Identifying Effective Models for the BIST100 Index," Review of Economic Perspectives, Sciendo, vol. 25(1), pages 66-90.
    5. Norjiah Muslim & Rosita Binti Hussin & Fatin Fasihah Binti Johari, 2025. "From Data To Decision: Empowering Companies and Investors With Hybrid AI Stock Prediction Method," International Journal of Research and Innovation in Social Science, International Journal of Research and Innovation in Social Science (IJRISS), vol. 9(6), pages 561-573, June.
    6. Akash Doshi & Alexander Issa & Puneet Sachdeva & Sina Rafati & Somnath Rakshit, 2020. "Deep Stock Predictions," Papers 2006.04992, arXiv.org.
    7. Andrew Brim & Nicholas S Flann, 2022. "Deep reinforcement learning stock market trading, utilizing a CNN with candlestick images," PLOS ONE, Public Library of Science, vol. 17(2), pages 1-25, February.
    8. Zhiyuan Pei & Jianqi Yan & Jin Yan & Bailing Yang & Ziyuan Li & Lin Zhang & Xin Liu & Yang Zhang, 2024. "A Stock Price Prediction Approach Based on Time Series Decomposition and Multi-Scale CNN using OHLCT Images," Papers 2410.19291, arXiv.org, revised Oct 2024.
    9. Qinkai Chen & Christian-Yann Robert, 2021. "Multivariate Realized Volatility Forecasting with Graph Neural Network," Papers 2112.09015, arXiv.org, revised Dec 2021.
    10. Simon Liebermann & Jung-Sup Um & YoungSeok Hwang & Stephan Schlüter, 2021. "Performance Evaluation of Neural Network-Based Short-Term Solar Irradiation Forecasts," Energies, MDPI, vol. 14(11), pages 1-21, May.
    11. Pengfei Zhao & Haoren Zhu & Wilfred Siu Hung NG & Dik Lun Lee, 2024. "From GARCH to Neural Network for Volatility Forecast," Papers 2402.06642, arXiv.org.
    12. Huang, Wenyang & Wang, Huiwen & Qin, Haotong & Wei, Yigang & Chevallier, Julien, 2022. "Convolutional neural network forecasting of European Union allowances futures using a novel unconstrained transformation method," Energy Economics, Elsevier, vol. 110(C).
    13. Kaushal Attaluri & Mukesh Tripathi & Srinithi Reddy & Shivendra, 2024. "News-Driven Stock Price Forecasting in Indian Markets: A Comparative Study of Advanced Deep Learning Models," Papers 2411.05788, arXiv.org.
    14. Fernando Moreno-Pino & Stefan Zohren, 2022. "DeepVol: Volatility Forecasting from High-Frequency Data with Dilated Causal Convolutions," Papers 2210.04797, arXiv.org, revised Aug 2024.
    15. Catalin Stoean & Wiesław Paja & Ruxandra Stoean & Adrian Sandita, 2019. "Deep architectures for long-term stock price prediction with a heuristic-based strategy for trading simulations," PLOS ONE, Public Library of Science, vol. 14(10), pages 1-19, October.
    16. Nestoras Chalkidis & Rahul Savani, 2021. "Trading via Selective Classification," Papers 2110.14914, arXiv.org, revised Oct 2021.
    17. Waleed Soliman & Zhiyuan Chen & Colin Johnson & Sabrina Wong, 2025. "Improving ETF Prediction Through Sentiment Analysis: A DeepAR and FinBERT Approach With Controlled Seed Sampling," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 32(1), March.
    18. Yanyan Cui & Lixin Liu, 2022. "Investor sentiment-aware prediction model for P2P lending indicators based on LSTM," PLOS ONE, Public Library of Science, vol. 17(1), pages 1-17, January.
    19. Jun Zhang & Lan Li & Wei Chen, 2021. "Predicting Stock Price Using Two-Stage Machine Learning Techniques," Computational Economics, Springer;Society for Computational Economics, vol. 57(4), pages 1237-1261, April.
    20. Arash Peik & Mohammad Ali Zare Chahooki & Amin Milani Fard & Mehdi Agha Sarram, 2025. "Adaptive Temporal Fusion Transformers for Cryptocurrency Price Prediction," Papers 2509.10542, arXiv.org.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2301.04455. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.