IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v13y2025i15p2440-d1712579.html
   My bibliography  Save this article

Novel Gaussian-Decrement-Based Particle Swarm Optimization with Time-Varying Parameters for Economic Dispatch in Renewable-Integrated Microgrids

Author

Listed:
  • Yuan Wang

    (College of Mechanical Engineering, Zhejiang University of Technology, Hangzhou 310023, China)

  • Wangjia Lu

    (College of Mechanical Engineering, Zhejiang University of Technology, Hangzhou 310023, China)

  • Wenjun Du

    (Zhejiang Institute of Communications Co., Ltd., Hangzhou 310030, China
    Key Laboratory of Transport Industry of Comprehensive Transportation Theory, Hangzhou 310030, China)

  • Changyin Dong

    (School of Aeronautics, Northwestern Polytechnical University, Xi’an 710072, China
    National Key Laboratory of Aircraft Configuration Design, Xi’an 710072, China)

Abstract

Background: To address the uncertainties of renewable energy power generation, the disorderly charging characteristics of electric vehicles, and the high electricity cost of the power grid in expressway service areas, a method of economic dispatch optimization based on the improved particle swarm optimization algorithm is proposed in this study. Methods: Mathematical models of photovoltaic power generation, energy storage systems, and electric vehicles were established, thereby constructing the microgrid system model of the power load in the expressway service area. Taking the economic cost of electricity consumption in the service area as the objective function and simultaneously meeting constraints such as power balance, power grid interactions, and energy storage systems, a microgrid economy dispatch model is constructed. An improved particle swarm optimization algorithm with time-varying parameters of the inertia weight and learning factor was designed to solve the optimal dispatching strategy. The inertia weight was improved by adopting the Gaussian decreasing method, and the asymmetric dynamic learning factor was adjusted simultaneously. Findings: Field case studies demonstrate that, compared to other algorithms, the improved Particle Swarm Optimization algorithm effectively reduces the operational costs of microgrid systems while exhibiting accelerated convergence speed and enhanced robustness. Value: This study provides a theoretical mathematical reference for the economic dispatch optimization of microgrids in renewable-integrated transportation systems.

Suggested Citation

  • Yuan Wang & Wangjia Lu & Wenjun Du & Changyin Dong, 2025. "Novel Gaussian-Decrement-Based Particle Swarm Optimization with Time-Varying Parameters for Economic Dispatch in Renewable-Integrated Microgrids," Mathematics, MDPI, vol. 13(15), pages 1-21, July.
  • Handle: RePEc:gam:jmathe:v:13:y:2025:i:15:p:2440-:d:1712579
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/13/15/2440/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/13/15/2440/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Dong, Haiyan & Fu, Yanbo & Jia, Qingquan & Wen, Xiangyun, 2022. "Optimal dispatch of integrated energy microgrid considering hybrid structured electric-thermal energy storage," Renewable Energy, Elsevier, vol. 199(C), pages 628-639.
    2. Sk. A. Shezan & Kazi Nazmul Hasan & Akhlaqur Rahman & Manoj Datta & Ujjwal Datta, 2021. "Selection of Appropriate Dispatch Strategies for Effective Planning and Operation of a Microgrid," Energies, MDPI, vol. 14(21), pages 1-19, November.
    3. Hani Albalawi & Abdul Wadood & Herie Park, 2024. "Economic Load Dispatch Problem Analysis Based on Modified Moth Flame Optimizer (MMFO) Considering Emission and Wind Power," Mathematics, MDPI, vol. 12(21), pages 1-24, October.
    4. Mehrdad Tahmasebi & Jagadeesh Pasupuleti & Fatemeh Mohamadian & Mohammad Shakeri & Josep M. Guerrero & M. Reyasudin Basir Khan & Muhammad Shahzad Nazir & Amir Safari & Najmeh Bazmohammadi, 2021. "Optimal Operation of Stand-Alone Microgrid Considering Emission Issues and Demand Response Program Using Whale Optimization Algorithm," Sustainability, MDPI, vol. 13(14), pages 1-22, July.
    5. Fudong Li & Zonghao Shi & Zhihao Zhu & Yongjun Gan, 2025. "Energy Management Strategy for Direct Current Microgrids with Consideration of Photovoltaic Power Tracking Optimization," Energies, MDPI, vol. 18(2), pages 1-29, January.
    6. Hossain, Md Alamgir & Pota, Hemanshu Roy & Squartini, Stefano & Abdou, Ahmed Fathi, 2019. "Modified PSO algorithm for real-time energy management in grid-connected microgrids," Renewable Energy, Elsevier, vol. 136(C), pages 746-757.
    7. Zhenghang Song & Xiang Wang & Baoze Wei & Zhengyu Shan & Peiyuan Guan, 2023. "Distributed Finite-Time Cooperative Economic Dispatch Strategy for Smart Grid under DOS Attack," Mathematics, MDPI, vol. 11(9), pages 1-19, April.
    8. Craparo, Emily & Karatas, Mumtaz & Singham, Dashi I., 2017. "A robust optimization approach to hybrid microgrid operation using ensemble weather forecasts," Applied Energy, Elsevier, vol. 201(C), pages 135-147.
    9. Mazidi, Mohammadreza & Rezaei, Navid & Ghaderi, Abdolsalam, 2019. "Simultaneous power and heat scheduling of microgrids considering operational uncertainties: A new stochastic p-robust optimization approach," Energy, Elsevier, vol. 185(C), pages 239-253.
    10. Nemati, Mohsen & Braun, Martin & Tenbohlen, Stefan, 2018. "Optimization of unit commitment and economic dispatch in microgrids based on genetic algorithm and mixed integer linear programming," Applied Energy, Elsevier, vol. 210(C), pages 944-963.
    11. Alham, M.H. & Elshahed, M. & Ibrahim, Doaa Khalil & Abo El Zahab, Essam El Din, 2016. "A dynamic economic emission dispatch considering wind power uncertainty incorporating energy storage system and demand side management," Renewable Energy, Elsevier, vol. 96(PA), pages 800-811.
    12. Yang, Qiangda & Dong, Ning & Zhang, Jie, 2021. "An enhanced adaptive bat algorithm for microgrid energy scheduling," Energy, Elsevier, vol. 232(C).
    13. Du, Wenyi & Ma, Juan & Yin, Wanjun, 2023. "Orderly charging strategy of electric vehicle based on improved PSO algorithm," Energy, Elsevier, vol. 271(C).
    14. Jianfeng Li & Dongxiao Niu & Ming Wu & Yongli Wang & Fang Li & Huanran Dong, 2018. "Research on Battery Energy Storage as Backup Power in the Operation Optimization of a Regional Integrated Energy System," Energies, MDPI, vol. 11(11), pages 1-20, November.
    15. Daud, Abdel-Karim & Ismail, Mahmoud S., 2012. "Design of isolated hybrid systems minimizing costs and pollutant emissions," Renewable Energy, Elsevier, vol. 44(C), pages 215-224.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Raya-Armenta, Jose Maurilio & Bazmohammadi, Najmeh & Avina-Cervantes, Juan Gabriel & Sáez, Doris & Vasquez, Juan C. & Guerrero, Josep M., 2021. "Energy management system optimization in islanded microgrids: An overview and future trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    2. Wen, Lulu & Zhou, Kaile & Yang, Shanlin & Lu, Xinhui, 2019. "Optimal load dispatch of community microgrid with deep learning based solar power and load forecasting," Energy, Elsevier, vol. 171(C), pages 1053-1065.
    3. Tianle Li & Yifei Li & Fang Wang & Cheng Gong & Jingrui Zhang & Hao Ma, 2025. "Improved Parallel Differential Evolution Algorithm with Small Population for Multi-Period Optimal Dispatch Problem of Microgrids," Energies, MDPI, vol. 18(14), pages 1-26, July.
    4. Peddakapu, K. & Mohamed, M.R. & Srinivasarao, P. & Licari, J., 2024. "Optimized controllers for stabilizing the frequency changes in hybrid wind-photovoltaic-wave energy-based maritime microgrid systems," Applied Energy, Elsevier, vol. 361(C).
    5. Fontenot, Hannah & Dong, Bing, 2019. "Modeling and control of building-integrated microgrids for optimal energy management – A review," Applied Energy, Elsevier, vol. 254(C).
    6. Muhammad Salman Sami & Muhammad Abrar & Rizwan Akram & Muhammad Majid Hussain & Mian Hammad Nazir & Muhammad Saad Khan & Safdar Raza, 2021. "Energy Management of Microgrids for Smart Cities: A Review," Energies, MDPI, vol. 14(18), pages 1-18, September.
    7. Sadeghian, Omid & Mohammadpour Shotorbani, Amin & Mohammadi-Ivatloo, Behnam & Sadiq, Rehan & Hewage, Kasun, 2021. "Risk-averse maintenance scheduling of generation units in combined heat and power systems with demand response," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    8. Ismail, M.S. & Moghavvemi, M. & Mahlia, T.M.I., 2013. "Energy trends in Palestinian territories of West Bank and Gaza Strip: Possibilities for reducing the reliance on external energy sources," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 117-129.
    9. Romero-Quete, David & Garcia, Javier Rosero, 2019. "An affine arithmetic-model predictive control approach for optimal economic dispatch of combined heat and power microgrids," Applied Energy, Elsevier, vol. 242(C), pages 1436-1447.
    10. Ovidiu Ivanov & Samiran Chattopadhyay & Soumya Banerjee & Bogdan-Constantin Neagu & Gheorghe Grigoras & Mihai Gavrilas, 2020. "A Novel Algorithm with Multiple Consumer Demand Response Priorities in Residential Unbalanced LV Electricity Distribution Networks," Mathematics, MDPI, vol. 8(8), pages 1-24, July.
    11. Juaidi, Adel & Montoya, Francisco G. & Ibrik, Imad H. & Manzano-Agugliaro, Francisco, 2016. "An overview of renewable energy potential in Palestine," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 943-960.
    12. Muhammad Umair Safder & Mohammad J. Sanjari & Ameer Hamza & Rasoul Garmabdari & Md. Alamgir Hossain & Junwei Lu, 2023. "Enhancing Microgrid Stability and Energy Management: Techniques, Challenges, and Future Directions," Energies, MDPI, vol. 16(18), pages 1-28, September.
    13. Félix González & Paul Arévalo & Luis Ramirez, 2025. "Game Theory and Robust Predictive Control for Peer-to-Peer Energy Management: A Pathway to a Low-Carbon Economy," Sustainability, MDPI, vol. 17(5), pages 1-23, February.
    14. Zhou, Jianguo & Xu, Zhongtian, 2023. "Optimal sizing design and integrated cost-benefit assessment of stand-alone microgrid system with different energy storage employing chameleon swarm algorithm: A rural case in Northeast China," Renewable Energy, Elsevier, vol. 202(C), pages 1110-1137.
    15. Hao, Ran & Lu, Tianguang & Ai, Qian & Wang, Zhe & Wang, Xiaolong, 2020. "Distributed online learning and dynamic robust standby dispatch for networked microgrids," Applied Energy, Elsevier, vol. 274(C).
    16. Xu, Xiao & Hu, Weihao & Cao, Di & Liu, Wen & Huang, Qi & Hu, Yanting & Chen, Zhe, 2021. "Enhanced design of an offgrid PV-battery-methanation hybrid energy system for power/gas supply," Renewable Energy, Elsevier, vol. 167(C), pages 440-456.
    17. Oscar Núñez-Mata & Rodrigo Palma-Behnke & Felipe Valencia & Patricio Mendoza-Araya & Guillermo Jiménez-Estévez, 2018. "Adaptive Protection System for Microgrids Based on a Robust Optimization Strategy," Energies, MDPI, vol. 11(2), pages 1-16, February.
    18. Marek Krok & Paweł Majewski & Wojciech P. Hunek & Tomasz Feliks, 2022. "Energy Optimization of the Continuous-Time Perfect Control Algorithm," Energies, MDPI, vol. 15(4), pages 1-13, February.
    19. Nie, Qingyun & Zhang, Lihui & Tong, Zihao & Dai, Guyu & Chai, Jianxue, 2022. "Cost compensation method for PEVs participating in dynamic economic dispatch based on carbon trading mechanism," Energy, Elsevier, vol. 239(PA).
    20. Se-Hyeok Choi & Akhtar Hussain & Hak-Man Kim, 2018. "Adaptive Robust Optimization-Based Optimal Operation of Microgrids Considering Uncertainties in Arrival and Departure Times of Electric Vehicles," Energies, MDPI, vol. 11(10), pages 1-16, October.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:13:y:2025:i:15:p:2440-:d:1712579. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.