IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i21p7217-d670589.html
   My bibliography  Save this article

Selection of Appropriate Dispatch Strategies for Effective Planning and Operation of a Microgrid

Author

Listed:
  • Sk. A. Shezan

    (School of Electrical Engineering and Industrial Automation, Engineering Institute of Technology, Melbourne, VIC 3000, Australia
    School of Engineering, RMIT University, Melbourne 3000, Australia)

  • Kazi Nazmul Hasan

    (School of Engineering, RMIT University, Melbourne 3000, Australia)

  • Akhlaqur Rahman

    (School of Electrical Engineering and Industrial Automation, Engineering Institute of Technology, Melbourne, VIC 3000, Australia)

  • Manoj Datta

    (School of Engineering, RMIT University, Melbourne 3000, Australia)

  • Ujjwal Datta

    (College of Engineering and Science, Victoria University, P.O. Box 14428, Melbourne 8001, Australia)

Abstract

The power system responsiveness may be improved by determining the ideal size of each component and performing a reliability analysis. This study evaluated the design and optimization of an islanded hybrid microgrid system with multiple dispatch algorithms. As the penetration of renewable power increases in microgrids, the importance and influence of efficient design and operation of islanded hybrid microgrids grow. The Kangaroo Island in South Australia served as the study’s test microgrid. The sizing of the Kangaroo Island hybrid microgrid system, which includes solar PV, wind, a diesel engine, and battery storage, was adjusted for four dispatch schemes. In this study, the following dispatch strategies were used: (i) load following, (ii) cycle charging, (iii) generator order, and (iv) combination dispatch. The CO 2 emissions, net present cost (NPC), and energy cost of the islanded microgrid were all optimized (COE). The HOMER microgrid software platform was used to build all four dispatch algorithms, and DIgSILENT PowerFactory was used to analyze the power system’s responsiveness and dependability. The findings give a framework for estimating the generation mix and required resources for an islanded microgrid’s optimal functioning under various dispatch scenarios. According to the simulation results, load following is the optimum dispatch technique for an islanded hybrid microgrid that achieves the lowest cost of energy (COE) and net present cost (NPC).

Suggested Citation

  • Sk. A. Shezan & Kazi Nazmul Hasan & Akhlaqur Rahman & Manoj Datta & Ujjwal Datta, 2021. "Selection of Appropriate Dispatch Strategies for Effective Planning and Operation of a Microgrid," Energies, MDPI, vol. 14(21), pages 1-19, November.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:21:p:7217-:d:670589
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/21/7217/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/21/7217/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zhao, Bo & Xue, Meidong & Zhang, Xuesong & Wang, Caisheng & Zhao, Junhui, 2015. "An MAS based energy management system for a stand-alone microgrid at high altitude," Applied Energy, Elsevier, vol. 143(C), pages 251-261.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kizito, Rodney & Liu, Zeyu & Li, Xueping & Sun, Kai, 2022. "Multi-stage stochastic optimization of islanded utility-microgrids design after natural disasters," Operations Research Perspectives, Elsevier, vol. 9(C).
    2. Paolo Tenti & Tommaso Caldognetto, 2022. "Generalized Control of the Power Flow in Local Area Energy Networks," Energies, MDPI, vol. 15(4), pages 1-21, February.
    3. Elena Sosnina & Andrey Dar’enkov & Andrey Kurkin & Ivan Lipuzhin & Andrey Mamonov, 2022. "Review of Efficiency Improvement Technologies of Wind Diesel Hybrid Systems for Decreasing Fuel Consumption," Energies, MDPI, vol. 16(1), pages 1-38, December.
    4. Zhou, Jianguo & Xu, Zhongtian, 2023. "Optimal sizing design and integrated cost-benefit assessment of stand-alone microgrid system with different energy storage employing chameleon swarm algorithm: A rural case in Northeast China," Renewable Energy, Elsevier, vol. 202(C), pages 1110-1137.
    5. Angelos Patsidis & Adam Dyśko & Campbell Booth & Anastasios Oulis Rousis & Polyxeni Kalliga & Dimitrios Tzelepis, 2023. "Digital Architecture for Monitoring and Operational Analytics of Multi-Vector Microgrids Utilizing Cloud Computing, Advanced Virtualization Techniques, and Data Analytics Methods," Energies, MDPI, vol. 16(16), pages 1-19, August.
    6. Sk. A. Shezan & Innocent Kamwa & Md. Fatin Ishraque & S. M. Muyeen & Kazi Nazmul Hasan & R. Saidur & Syed Muhammad Rizvi & Md Shafiullah & Fahad A. Al-Sulaiman, 2023. "Evaluation of Different Optimization Techniques and Control Strategies of Hybrid Microgrid: A Review," Energies, MDPI, vol. 16(4), pages 1-30, February.
    7. Yasir Basheer & Asad Waqar & Saeed Mian Qaisar & Toqeer Ahmed & Nasim Ullah & Sattam Alotaibi, 2022. "Analyzing the Prospect of Hybrid Energy in the Cement Industry of Pakistan, Using HOMER Pro," Sustainability, MDPI, vol. 14(19), pages 1-24, September.
    8. Ali Saleh Aziz & Mohammad Faridun Naim Tajuddin & Tekai Eddine Khalil Zidane & Chun-Lien Su & Abdullahi Abubakar Mas’ud & Mohammed J. Alwazzan & Ali Jawad Kadhim Alrubaie, 2022. "Design and Optimization of a Grid-Connected Solar Energy System: Study in Iraq," Sustainability, MDPI, vol. 14(13), pages 1-29, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Jianwei & Xiong, Rui & Mu, Hao & Cornélusse, Bertrand & Vanderbemden, Philippe & Ernst, Damien & Yuan, Weijia, 2018. "Design and real-time test of a hybrid energy storage system in the microgrid with the benefit of improving the battery lifetime," Applied Energy, Elsevier, vol. 218(C), pages 470-478.
    2. Gruber, J.K. & Huerta, F. & Matatagui, P. & Prodanović, M., 2015. "Advanced building energy management based on a two-stage receding horizon optimization," Applied Energy, Elsevier, vol. 160(C), pages 194-205.
    3. Muhammad Asghar Majeed & Furqan Asghar & Muhammad Imtiaz Hussain & Waseem Amjad & Anjum Munir & Hammad Armghan & Jun-Tae Kim, 2022. "Adaptive Dynamic Control Based Optimization of Renewable Energy Resources for Grid-Tied Microgrids," Sustainability, MDPI, vol. 14(3), pages 1-14, February.
    4. Hossein Shayeghi & Elnaz Shahryari & Mohammad Moradzadeh & Pierluigi Siano, 2019. "A Survey on Microgrid Energy Management Considering Flexible Energy Sources," Energies, MDPI, vol. 12(11), pages 1-26, June.
    5. Most Nahida Akter & Md Apel Mahmud & Amanullah Maung Than Oo, 2017. "A Hierarchical Transactive Energy Management System for Energy Sharing in Residential Microgrids," Energies, MDPI, vol. 10(12), pages 1-27, December.
    6. Nemanja Mišljenović & Matej Žnidarec & Goran Knežević & Damir Šljivac & Andreas Sumper, 2023. "A Review of Energy Management Systems and Organizational Structures of Prosumers," Energies, MDPI, vol. 16(7), pages 1-32, March.
    7. Brida V. Mbuwir & Frederik Ruelens & Fred Spiessens & Geert Deconinck, 2017. "Battery Energy Management in a Microgrid Using Batch Reinforcement Learning," Energies, MDPI, vol. 10(11), pages 1-19, November.
    8. Fang, Xinli & Yang, Qiang & Wang, Jianhui & Yan, Wenjun, 2016. "Coordinated dispatch in multiple cooperative autonomous islanded microgrids," Applied Energy, Elsevier, vol. 162(C), pages 40-48.
    9. Lopez-Rodriguez, I. & Hernandez-Tejera, M., 2015. "Infrastructure based on supernodes and software agents for the implementation of energy markets in demand-response programs," Applied Energy, Elsevier, vol. 158(C), pages 1-11.
    10. Khan, Muhammad Waseem & Wang, Jie, 2017. "The research on multi-agent system for microgrid control and optimization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 1399-1411.
    11. Lv, Tianguang & Ai, Qian, 2016. "Interactive energy management of networked microgrids-based active distribution system considering large-scale integration of renewable energy resources," Applied Energy, Elsevier, vol. 163(C), pages 408-422.
    12. Wang, Yijian & Cui, Yang & Li, Yang & Xu, Yang, 2023. "Collaborative optimization of multi-microgrids system with shared energy storage based on multi-agent stochastic game and reinforcement learning," Energy, Elsevier, vol. 280(C).
    13. Xi, Lei & Yu, Tao & Yang, Bo & Zhang, Xiaoshun & Qiu, Xuanyu, 2016. "A wolf pack hunting strategy based virtual tribes control for automatic generation control of smart grid," Applied Energy, Elsevier, vol. 178(C), pages 198-211.
    14. Ying Ji & Jianhui Wang & Jiacan Xu & Xiaoke Fang & Huaguang Zhang, 2019. "Real-Time Energy Management of a Microgrid Using Deep Reinforcement Learning," Energies, MDPI, vol. 12(12), pages 1-21, June.
    15. Morsali, Roozbeh & Thirunavukkarasu, Gokul Sidarth & Seyedmahmoudian, Mehdi & Stojcevski, Alex & Kowalczyk, Ryszard, 2020. "A relaxed constrained decentralised demand side management system of a community-based residential microgrid with realistic appliance models," Applied Energy, Elsevier, vol. 277(C).
    16. Roth, Lucas & Lowitzsch, Jens & Yildiz, Özgür & Hashani, Alban, 2016. "The impact of (co-) ownership of renewable energy production facilities on demand flexibility," MPRA Paper 73562, University Library of Munich, Germany.
    17. Fontenot, Hannah & Dong, Bing, 2019. "Modeling and control of building-integrated microgrids for optimal energy management – A review," Applied Energy, Elsevier, vol. 254(C).
    18. Monaaf D. A. Al-Falahi & Tomasz Tarasiuk & Shantha Gamini Jayasinghe & Zheming Jin & Hossein Enshaei & Josep M. Guerrero, 2018. "AC Ship Microgrids: Control and Power Management Optimization," Energies, MDPI, vol. 11(6), pages 1-20, June.
    19. Coelho, Vitor N. & Weiss Cohen, Miri & Coelho, Igor M. & Liu, Nian & Guimarães, Frederico Gadelha, 2017. "Multi-agent systems applied for energy systems integration: State-of-the-art applications and trends in microgrids," Applied Energy, Elsevier, vol. 187(C), pages 820-832.
    20. He, Senyu & Yin, Jianhua & Zhang, Bin & Wang, Zhaohua, 2018. "How to upgrade an enterprise’s low-carbon technologies under a carbon tax: The trade-off between tax and upgrade fee," Applied Energy, Elsevier, vol. 227(C), pages 564-573.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:21:p:7217-:d:670589. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.