IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v158y2015icp1-11.html
   My bibliography  Save this article

Infrastructure based on supernodes and software agents for the implementation of energy markets in demand-response programs

Author

Listed:
  • Lopez-Rodriguez, I.
  • Hernandez-Tejera, M.

Abstract

The most successful peer-to-peer networks are based on the concept of supernode, which is an operating point of the network that provides services and advanced functionalities to other nodes. Inspired by this idea, this paper proposes to integrate nodes that provide intelligent advanced services in the future architecture of the electrical grid. Besides facilitating the access to data services such as demand estimations and weather forecasts, these nodes are especially meant to hold virtual environments in which software agents, after being contracted, negotiate on behalf of users in energy markets. This architecture is designed to be compatible with the Energy Interoperation OASIS standard. The capabilities and feasibility of the proposal is demonstrated through realistic experiments based on OpenADR programs, in which users exchange energy by using parallel auction markets. In addition, in order to have the roles of buyer and seller in demand-response programs, thus allowing the creation of markets, a conceptual model based on negative loads and critical loads is provided. The experiments have proven that the proposed architecture facilitates the implementation of advanced distributed management systems in order that smart metering infrastructures, in contrast with traditional agent-based solutions, are released to perform negotiation tasks and access data services, while users gain both autonomy and decision-making capacity.

Suggested Citation

  • Lopez-Rodriguez, I. & Hernandez-Tejera, M., 2015. "Infrastructure based on supernodes and software agents for the implementation of energy markets in demand-response programs," Applied Energy, Elsevier, vol. 158(C), pages 1-11.
  • Handle: RePEc:eee:appene:v:158:y:2015:i:c:p:1-11
    DOI: 10.1016/j.apenergy.2015.08.039
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261915009721
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2015.08.039?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yang, Liu & Yan, Haiyan & Lam, Joseph C., 2014. "Thermal comfort and building energy consumption implications – A review," Applied Energy, Elsevier, vol. 115(C), pages 164-173.
    2. Li, Gong & Shi, Jing, 2012. "Agent-based modeling for trading wind power with uncertainty in the day-ahead wholesale electricity markets of single-sided auctions," Applied Energy, Elsevier, vol. 99(C), pages 13-22.
    3. Tim Hoppe, 2008. "An Experimental Analysis of Parallel Multiple Auctions," FEMM Working Papers 08031, Otto-von-Guericke University Magdeburg, Faculty of Economics and Management.
    4. Shen, Bo & Ghatikar, Girish & Lei, Zeng & Li, Jinkai & Wikler, Greg & Martin, Phil, 2014. "The role of regulatory reforms, market changes, and technology development to make demand response a viable resource in meeting energy challenges," Applied Energy, Elsevier, vol. 130(C), pages 814-823.
    5. Zhao, Bo & Xue, Meidong & Zhang, Xuesong & Wang, Caisheng & Zhao, Junhui, 2015. "An MAS based energy management system for a stand-alone microgrid at high altitude," Applied Energy, Elsevier, vol. 143(C), pages 251-261.
    6. Kuznetsova, Elizaveta & Li, Yan-Fu & Ruiz, Carlos & Zio, Enrico, 2014. "An integrated framework of agent-based modelling and robust optimization for microgrid energy management," Applied Energy, Elsevier, vol. 129(C), pages 70-88.
    7. Kyriakarakos, George & Piromalis, Dimitrios D. & Dounis, Anastasios I. & Arvanitis, Konstantinos G. & Papadakis, George, 2013. "Intelligent demand side energy management system for autonomous polygeneration microgrids," Applied Energy, Elsevier, vol. 103(C), pages 39-51.
    8. Wang, Zhu & Wang, Lingfeng & Dounis, Anastasios I. & Yang, Rui, 2012. "Multi-agent control system with information fusion based comfort model for smart buildings," Applied Energy, Elsevier, vol. 99(C), pages 247-254.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fichera, Alberto & Pluchino, Alessandro & Volpe, Rosaria, 2018. "A multi-layer agent-based model for the analysis of energy distribution networks in urban areas," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 508(C), pages 710-725.
    2. Olamide Jogunola & Augustine Ikpehai & Kelvin Anoh & Bamidele Adebisi & Mohammad Hammoudeh & Sung-Yong Son & Georgina Harris, 2017. "State-Of-The-Art and Prospects for Peer-To-Peer Transaction-Based Energy System," Energies, MDPI, Open Access Journal, vol. 10(12), pages 1-28, December.
    3. Skarvelis-Kazakos, Spyros & Papadopoulos, Panagiotis & Grau Unda, Iñaki & Gorman, Terry & Belaidi, Abdelhafid & Zigan, Stefan, 2016. "Multiple energy carrier optimisation with intelligent agents," Applied Energy, Elsevier, vol. 167(C), pages 323-335.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhao, Bo & Xue, Meidong & Zhang, Xuesong & Wang, Caisheng & Zhao, Junhui, 2015. "An MAS based energy management system for a stand-alone microgrid at high altitude," Applied Energy, Elsevier, vol. 143(C), pages 251-261.
    2. Fontenot, Hannah & Dong, Bing, 2019. "Modeling and control of building-integrated microgrids for optimal energy management – A review," Applied Energy, Elsevier, vol. 254(C).
    3. Coelho, Vitor N. & Weiss Cohen, Miri & Coelho, Igor M. & Liu, Nian & Guimarães, Frederico Gadelha, 2017. "Multi-agent systems applied for energy systems integration: State-of-the-art applications and trends in microgrids," Applied Energy, Elsevier, vol. 187(C), pages 820-832.
    4. He, Senyu & Yin, Jianhua & Zhang, Bin & Wang, Zhaohua, 2018. "How to upgrade an enterprise’s low-carbon technologies under a carbon tax: The trade-off between tax and upgrade fee," Applied Energy, Elsevier, vol. 227(C), pages 564-573.
    5. Kofinas, P. & Dounis, A.I. & Vouros, G.A., 2018. "Fuzzy Q-Learning for multi-agent decentralized energy management in microgrids," Applied Energy, Elsevier, vol. 219(C), pages 53-67.
    6. Korkas, Christos D. & Baldi, Simone & Michailidis, Iakovos & Kosmatopoulos, Elias B., 2016. "Occupancy-based demand response and thermal comfort optimization in microgrids with renewable energy sources and energy storage," Applied Energy, Elsevier, vol. 163(C), pages 93-104.
    7. Xi, Lei & Yu, Tao & Yang, Bo & Zhang, Xiaoshun & Qiu, Xuanyu, 2016. "A wolf pack hunting strategy based virtual tribes control for automatic generation control of smart grid," Applied Energy, Elsevier, vol. 178(C), pages 198-211.
    8. Baldi, Simone & Yuan, Shuai & Endel, Petr & Holub, Ondrej, 2016. "Dual estimation: Constructing building energy models from data sampled at low rate," Applied Energy, Elsevier, vol. 169(C), pages 81-92.
    9. Sahoo, Subham & Pullaguram, Deepak & Mishra, Sukumar & Wu, Jianzhong & Senroy, Nilanjan, 2018. "A containment based distributed finite-time controller for bounded voltage regulation & proportionate current sharing in DC microgrids," Applied Energy, Elsevier, vol. 228(C), pages 2526-2538.
    10. repec:gam:jeners:v:8:y:2015:i:11:p:13265-13283:d:59252 is not listed on IDEAS
    11. Bünning, Felix & Sangi, Roozbeh & Müller, Dirk, 2017. "A Modelica library for the agent-based control of building energy systems," Applied Energy, Elsevier, vol. 193(C), pages 52-59.
    12. Bin Ye & Jingjing Jiang & Lixin Miao & Peng Yang & Ji Li & Bo Shen, 2015. "Feasibility Study of a Solar-Powered Electric Vehicle Charging Station Model," Energies, MDPI, Open Access Journal, vol. 8(11), pages 1-19, November.
    13. Li, Bei & Roche, Robin & Paire, Damien & Miraoui, Abdellatif, 2017. "Sizing of a stand-alone microgrid considering electric power, cooling/heating, hydrogen loads and hydrogen storage degradation," Applied Energy, Elsevier, vol. 205(C), pages 1244-1259.
    14. Baldi, Simone & Korkas, Christos D. & Lv, Maolong & Kosmatopoulos, Elias B., 2018. "Automating occupant-building interaction via smart zoning of thermostatic loads: A switched self-tuning approach," Applied Energy, Elsevier, vol. 231(C), pages 1246-1258.
    15. Xu, Bing & Nayak, Amar & Gray, David & Ouenniche, Jamal, 2016. "Assessing energy business cases implemented in the North Sea Region and strategy recommendations," Applied Energy, Elsevier, vol. 172(C), pages 360-371.
    16. Moncada, J.A. & Lukszo, Z. & Junginger, M. & Faaij, A. & Weijnen, M., 2017. "A conceptual framework for the analysis of the effect of institutions on biofuel supply chains," Applied Energy, Elsevier, vol. 185(P1), pages 895-915.
    17. Fang, Xinli & Yang, Qiang & Wang, Jianhui & Yan, Wenjun, 2016. "Coordinated dispatch in multiple cooperative autonomous islanded microgrids," Applied Energy, Elsevier, vol. 162(C), pages 40-48.
    18. Moncada, J.A. & Verstegen, J.A. & Posada, J.A. & Junginger, M. & Lukszo, Z. & Faaij, A. & Weijnen, M., 2018. "Exploring policy options to spur the expansion of ethanol production and consumption in Brazil: An agent-based modeling approach," Energy Policy, Elsevier, vol. 123(C), pages 619-641.
    19. Lv, Tianguang & Ai, Qian, 2016. "Interactive energy management of networked microgrids-based active distribution system considering large-scale integration of renewable energy resources," Applied Energy, Elsevier, vol. 163(C), pages 408-422.
    20. Yazan, Devrim Murat & Fraccascia, Luca & Mes, Martijn & Zijm, Henk, 2018. "Cooperation in manure-based biogas production networks: An agent-based modeling approach," Applied Energy, Elsevier, vol. 212(C), pages 820-833.
    21. Howell, Shaun & Rezgui, Yacine & Hippolyte, Jean-Laurent & Jayan, Bejay & Li, Haijiang, 2017. "Towards the next generation of smart grids: Semantic and holonic multi-agent management of distributed energy resources," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 193-214.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:158:y:2015:i:c:p:1-11. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: . General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.