IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i6p1458-d150789.html
   My bibliography  Save this article

AC Ship Microgrids: Control and Power Management Optimization

Author

Listed:
  • Monaaf D. A. Al-Falahi

    (National Centre for Ports and Shipping, Australian Maritime College, University of Tasmania, Tasmania 7248, Australia)

  • Tomasz Tarasiuk

    (Department of Marine Electrical Power Engineering, Gdynia Maritime University, Gdynia 81225, Poland)

  • Shantha Gamini Jayasinghe

    (National Centre for Ports and Shipping, Australian Maritime College, University of Tasmania, Tasmania 7248, Australia)

  • Zheming Jin

    (Institute of Energy Technology, Aalborg University, Aalborg 9100, Denmark)

  • Hossein Enshaei

    (National Centre for Ports and Shipping, Australian Maritime College, University of Tasmania, Tasmania 7248, Australia)

  • Josep M. Guerrero

    (Institute of Energy Technology, Aalborg University, Aalborg 9100, Denmark)

Abstract

At sea, the electrical power system of a ship can be considered as an islanded microgrid. When connected to shore power at berth, the same power system acts as a grid connected microgrid or an extension of the grid. Therefore, ship microgrids show some resemblance to terrestrial microgrids. Nevertheless, due to the presence of large dynamic loads, such as electric propulsion loads, keeping the voltage and frequency within a permissible range and ensuring the continuity of supply are more challenging in ship microgrids. Moreover, with the growing demand for emission reductions and fuel efficiency improvements, alternative energy sources and energy storage technologies are becoming popular in ship microgrids. In this context, the integration of multiple energy sources and storage systems in ship microgrids requires an efficient power management system (PMS). These challenging environments and trends demand advanced control and power management solutions that are customized for ship microgrids. This paper presents a review on recent developments of control technologies and power management strategies proposed for AC ship microgrids.

Suggested Citation

  • Monaaf D. A. Al-Falahi & Tomasz Tarasiuk & Shantha Gamini Jayasinghe & Zheming Jin & Hossein Enshaei & Josep M. Guerrero, 2018. "AC Ship Microgrids: Control and Power Management Optimization," Energies, MDPI, vol. 11(6), pages 1-20, June.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:6:p:1458-:d:150789
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/6/1458/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/6/1458/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Marco Altosole & Giovanni Benvenuto & Ugo Campora & Michele Laviola & Alessandro Trucco, 2017. "Waste Heat Recovery from Marine Gas Turbines and Diesel Engines," Energies, MDPI, vol. 10(5), pages 1-24, May.
    2. Kutaiba Sabah Nimma & Monaaf D. A. Al-Falahi & Hung Duc Nguyen & S. D. G. Jayasinghe & Thair S. Mahmoud & Michael Negnevitsky, 2018. "Grey Wolf Optimization-Based Optimum Energy-Management and Battery-Sizing Method for Grid-Connected Microgrids," Energies, MDPI, vol. 11(4), pages 1-27, April.
    3. Jesper Graa Andreasen & Andrea Meroni & Fredrik Haglind, 2017. "A Comparison of Organic and Steam Rankine Cycle Power Systems for Waste Heat Recovery on Large Ships," Energies, MDPI, vol. 10(4), pages 1-23, April.
    4. Geertsma, R.D. & Negenborn, R.R. & Visser, K. & Hopman, J.J., 2017. "Design and control of hybrid power and propulsion systems for smart ships: A review of developments," Applied Energy, Elsevier, vol. 194(C), pages 30-54.
    5. Hou, Jun & Sun, Jing & Hofmann, Heath, 2018. "Adaptive model predictive control with propulsion load estimation and prediction for all-electric ship energy management," Energy, Elsevier, vol. 150(C), pages 877-889.
    6. Meng, Lexuan & Sanseverino, Eleonora Riva & Luna, Adriana & Dragicevic, Tomislav & Vasquez, Juan C. & Guerrero, Josep M., 2016. "Microgrid supervisory controllers and energy management systems: A literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 1263-1273.
    7. Hai Lan & Jinfeng Dai & Shuli Wen & Ying-Yi Hong & David C. Yu & Yifei Bai, 2015. "Optimal Tilt Angle of Photovoltaic Arrays and Economic Allocation of Energy Storage System on Large Oil Tanker Ship," Energies, MDPI, vol. 8(10), pages 1-16, October.
    8. Zhao, Bo & Xue, Meidong & Zhang, Xuesong & Wang, Caisheng & Zhao, Junhui, 2015. "An MAS based energy management system for a stand-alone microgrid at high altitude," Applied Energy, Elsevier, vol. 143(C), pages 251-261.
    9. Hou, Jun & Sun, Jing & Hofmann, Heath, 2018. "Control development and performance evaluation for battery/flywheel hybrid energy storage solutions to mitigate load fluctuations in all-electric ship propulsion systems," Applied Energy, Elsevier, vol. 212(C), pages 919-930.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Latif, Abdul & Hussain, S. M. Suhail & Das, Dulal Chandra & Ustun, Taha Selim, 2021. "Double stage controller optimization for load frequency stabilization in hybrid wind-ocean wave energy based maritime microgrid system," Applied Energy, Elsevier, vol. 282(PA).
    2. Dariusz Tarnapowicz & Sergey German-Galkin & Marek Staude, 2021. "Investigation Concerning the Excitation Loss of Synchronous Generators in a Stand-Alone Ship Power Plant," Energies, MDPI, vol. 14(10), pages 1-17, May.
    3. Trivyza, Nikoletta L. & Rentizelas, Athanasios & Theotokatos, Gerasimos & Boulougouris, Evangelos, 2022. "Decision support methods for sustainable ship energy systems: A state-of-the-art review," Energy, Elsevier, vol. 239(PC).
    4. Wang, Jinggai & Li, Huanhuan & Yang, Zaili & Ge, Ying-En, 2024. "Shore power for reduction of shipping emission in port: A bibliometric analysis," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 188(C).
    5. Nivolianiti, Evaggelia & Karnavas, Yannis L. & Charpentier, Jean-Frederic, 2024. "Energy management of shipboard microgrids integrating energy storage systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PA).
    6. Al-Falahi, Monaaf D.A. & Jayasinghe, Shantha D.G. & Enshaei, Hossein, 2019. "Hybrid algorithm for optimal operation of hybrid energy systems in electric ferries," Energy, Elsevier, vol. 187(C).
    7. Jagdesh Kumar & Chethan Parthasarathy & Mikko Västi & Hannu Laaksonen & Miadreza Shafie-Khah & Kimmo Kauhaniemi, 2020. "Sizing and Allocation of Battery Energy Storage Systems in Åland Islands for Large-Scale Integration of Renewables and Electric Ferry Charging Stations," Energies, MDPI, vol. 13(2), pages 1-23, January.
    8. Joao L. Afonso & Luiz A. Lisboa Cardoso & Delfim Pedrosa & Tiago J. C. Sousa & Luis Machado & Mohamed Tanta & Vitor Monteiro, 2020. "A Review on Power Electronics Technologies for Electric Mobility," Energies, MDPI, vol. 13(23), pages 1-61, December.
    9. Jagdesh Kumar & Aushiq Ali Memon & Lauri Kumpulainen & Kimmo Kauhaniemi & Omid Palizban, 2019. "Design and Analysis of New Harbour Grid Models to Facilitate Multiple Scenarios of Battery Charging and Onshore Supply for Modern Vessels," Energies, MDPI, vol. 12(12), pages 1-18, June.
    10. Nur Najihah Abu Bakar & Josep M. Guerrero & Juan C. Vasquez & Najmeh Bazmohammadi & Yun Yu & Abdullah Abusorrah & Yusuf A. Al-Turki, 2021. "A Review of the Conceptualization and Operational Management of Seaport Microgrids on the Shore and Seaside," Energies, MDPI, vol. 14(23), pages 1-31, November.
    11. Chaochun Yu & Liang Qi & Jie Sun & Chunhui Jiang & Jun Su & Wentao Shu, 2022. "Fault Diagnosis Technology for Ship Electrical Power System," Energies, MDPI, vol. 15(4), pages 1-16, February.
    12. Andrzej Łebkowski & Wojciech Koznowski, 2020. "Analysis of the Use of Electric and Hybrid Drives on SWATH Ships," Energies, MDPI, vol. 13(24), pages 1-26, December.
    13. Mostafa Kermani & Giuseppe Parise & Ben Chavdarian & Luigi Martirano, 2020. "Ultracapacitors for Port Crane Applications: Sizing and Techno-Economic Analysis," Energies, MDPI, vol. 13(8), pages 1-19, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hou, Jun & Song, Ziyou & Park, Hyeongjun & Hofmann, Heath & Sun, Jing, 2018. "Implementation and evaluation of real-time model predictive control for load fluctuations mitigation in all-electric ship propulsion systems," Applied Energy, Elsevier, vol. 230(C), pages 62-77.
    2. Nuchturee, Chalermkiat & Li, Tie & Xia, Hongpu, 2020. "Energy efficiency of integrated electric propulsion for ships – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    3. Tang, Ruoli & An, Qing & Xu, Fan & Zhang, Xiaodi & Li, Xin & Lai, Jingang & Dong, Zhengcheng, 2020. "Optimal operation of hybrid energy system for intelligent ship: An ultrahigh-dimensional model and control method," Energy, Elsevier, vol. 211(C).
    4. Tien Anh Tran, 2023. "Study on proposed respectively method for marine propulsion plant system: a case study on passenger ship," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 14(6), pages 2395-2409, December.
    5. Hossein Shayeghi & Elnaz Shahryari & Mohammad Moradzadeh & Pierluigi Siano, 2019. "A Survey on Microgrid Energy Management Considering Flexible Energy Sources," Energies, MDPI, vol. 12(11), pages 1-26, June.
    6. Yuan, Yupeng & Wang, Jixiang & Yan, Xinping & Shen, Boyang & Long, Teng, 2020. "A review of multi-energy hybrid power system for ships," Renewable and Sustainable Energy Reviews, Elsevier, vol. 132(C).
    7. Xie, Peilin & Tan, Sen & Bazmohammadi, Najmeh & Guerrero, Josep. M. & Vasquez, Juan. C. & Alcala, Jose Matas & Carreño, Jorge El Mariachet, 2022. "A distributed real-time power management scheme for shipboard zonal multi-microgrid system," Applied Energy, Elsevier, vol. 317(C).
    8. Haseltalab, Ali & Negenborn, Rudy R., 2019. "Model predictive maneuvering control and energy management for all-electric autonomous ships," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    9. Dario Barsi & Matteo Luzzi & Francesca Satta & Pietro Zunino, 2021. "On the Possible Introduction of Mini Gas Turbine Cycles Onboard Ships for Heat and Power Generation," Energies, MDPI, vol. 14(3), pages 1-12, January.
    10. Morsali, Roozbeh & Thirunavukkarasu, Gokul Sidarth & Seyedmahmoudian, Mehdi & Stojcevski, Alex & Kowalczyk, Ryszard, 2020. "A relaxed constrained decentralised demand side management system of a community-based residential microgrid with realistic appliance models," Applied Energy, Elsevier, vol. 277(C).
    11. Fontenot, Hannah & Dong, Bing, 2019. "Modeling and control of building-integrated microgrids for optimal energy management – A review," Applied Energy, Elsevier, vol. 254(C).
    12. Inal, Omer Berkehan & Charpentier, Jean-Frédéric & Deniz, Cengiz, 2022. "Hybrid power and propulsion systems for ships: Current status and future challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    13. Chai, Merlin & Bonthapalle, Dastagiri Reddy & Sobrayen, Lingeshwaren & Panda, Sanjib K. & Wu, Die & Chen, XiaoQing, 2018. "Alternating current and direct current-based electrical systems for marine vessels with electric propulsion drives," Applied Energy, Elsevier, vol. 231(C), pages 747-756.
    14. Gojmir Radica & Tino Vidović & Jakov Šimunović & Zdeslav Jurić, 2025. "Overview of Hybrid Marine Energy System Configurations and System Component Modeling Approaches," Energies, MDPI, vol. 18(5), pages 1-24, February.
    15. Wojciech Litwin & Wojciech Leśniewski & Daniel Piątek & Karol Niklas, 2019. "Experimental Research on the Energy Efficiency of a Parallel Hybrid Drive for an Inland Ship," Energies, MDPI, vol. 12(9), pages 1-16, May.
    16. Liya Ren & Huaixin Wang, 2019. "Parametric Optimization and Thermodynamic Performance Comparison of Organic Trans-Critical Cycle, Steam Flash Cycle, and Steam Dual-Pressure Cycle for Waste Heat Recovery," Energies, MDPI, vol. 12(24), pages 1-22, December.
    17. Miretti, Federico & Misul, Daniela & Gennaro, Giulio & Ferrari, Antonio, 2022. "Hybridizing waterborne transport: Modeling and simulation of low-emissions hybrid waterbuses for the city of Venice," Energy, Elsevier, vol. 244(PB).
    18. Tang, Ruoli & Li, Xin & Lai, Jingang, 2018. "A novel optimal energy-management strategy for a maritime hybrid energy system based on large-scale global optimization," Applied Energy, Elsevier, vol. 228(C), pages 254-264.
    19. Nivolianiti, Evaggelia & Karnavas, Yannis L. & Charpentier, Jean-Frederic, 2024. "Energy management of shipboard microgrids integrating energy storage systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PA).
    20. Zhihang Bei & Juan Wang & Yalun Li & Hewu Wang & Minghai Li & Feng Qian & Wenqiang Xu, 2024. "Challenges and Solutions of Ship Power System Electrification," Energies, MDPI, vol. 17(13), pages 1-25, July.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:6:p:1458-:d:150789. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.