IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v13y2025i13p2077-d1685750.html
   My bibliography  Save this article

Modeling Porosity Distribution Strategies in PEM Water Electrolyzers: A Comparative Analytical and Numerical Study

Author

Listed:
  • Ali Bayat

    (School of Mechanical and Mechatronic Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia)

  • Prodip K. Das

    (School of Engineering, The University of Edinburgh, Edinburgh EH9 3FB, UK)

  • Suvash C. Saha

    (School of Mechanical and Mechatronic Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia)

Abstract

Proton exchange membrane water electrolyzers (PEMWEs) are a promising technology for green hydrogen production. However, the adoption of PEMWE-based hydrogen production systems remains limited due to several challenges, including high material costs, limited performance and durability, and difficulties in scaling the technology. Computational modeling serves as a powerful tool to address these challenges by optimizing system design, improving material performance, and reducing overall costs, thereby accelerating the commercial rollout of PEMWE technology. Despite this, conventional models often oversimplify key components, such as porous transport and catalyst layers, by assuming constant porosity and neglecting the spatial heterogeneity found in real electrodes. This simplification can significantly impact the accuracy of performance predictions and the overall efficiency of electrolyzers. This study develops a mathematical framework for modeling variable porosity distributions—including constant, linearly graded, and stepwise profiles—and derives analytical expressions for permeability, effective diffusivity, and electrical conductivity. These functions are integrated into a three-dimensional multi-domain COMSOL simulation to assess their impact on electrochemical performance and transport behavior. The results reveal that although porosity variations have minimal effect on polarization at low voltages, they significantly influence internal pressure, species distribution, and gas evacuation at higher loads. A notable finding is that reversing stepwise porosity—placing high porosity near the membrane rather than the channel—can alleviate oxygen accumulation and improve current density. A multi-factor comparison highlights this reversed configuration as the most favorable among the tested strategies. The proposed modeling approach effectively connects porous media theory and system-level electrochemical analysis, offering a flexible platform for the future design of porous electrodes in PEMWE and other energy conversion systems.

Suggested Citation

  • Ali Bayat & Prodip K. Das & Suvash C. Saha, 2025. "Modeling Porosity Distribution Strategies in PEM Water Electrolyzers: A Comparative Analytical and Numerical Study," Mathematics, MDPI, vol. 13(13), pages 1-36, June.
  • Handle: RePEc:gam:jmathe:v:13:y:2025:i:13:p:2077-:d:1685750
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/13/13/2077/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/13/13/2077/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Huang, Yu-Xian & Cheng, Chin-Hsiang & Wang, Xiao-Dong & Jang, Jiin-Yuh, 2010. "Effects of porosity gradient in gas diffusion layers on performance of proton exchange membrane fuel cells," Energy, Elsevier, vol. 35(12), pages 4786-4794.
    2. Roshandel, R. & Farhanieh, B. & Saievar-Iranizad, E., 2005. "The effects of porosity distribution variation on PEM fuel cell performance," Renewable Energy, Elsevier, vol. 30(10), pages 1557-1572.
    3. Park, Jaeman & Oh, Hwanyeong & Lee, Yoo Il & Min, Kyoungdoug & Lee, Eunsook & Jyoung, Jy-Young, 2016. "Effect of the pore size variation in the substrate of the gas diffusion layer on water management and fuel cell performance," Applied Energy, Elsevier, vol. 171(C), pages 200-212.
    4. Das, Prodip K. & Li, Xianguo & Liu, Zhong-Sheng, 2010. "Effective transport coefficients in PEM fuel cell catalyst and gas diffusion layers: Beyond Bruggeman approximation," Applied Energy, Elsevier, vol. 87(9), pages 2785-2796, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jiao, Daokuan & Jiao, Kui & Zhong, Shenghui & Du, Qing, 2022. "Investigations on heat and mass transfer in gas diffusion layers of PEMFC with a gas–liquid-solid coupled model," Applied Energy, Elsevier, vol. 316(C).
    2. Zhang, Xiaoqing & Yang, Jiapei & Ma, Xiao & Zhuge, Weilin & Shuai, Shijin, 2022. "Modelling and analysis on effects of penetration of microporous layer into gas diffusion layer in PEM fuel cells: Focusing on mass transport," Energy, Elsevier, vol. 254(PA).
    3. Liu, Huize & Hu, Zunyan & Li, Jianqiu & Xu, Liangfei & Shao, Yangbin & Ouyang, Minggao, 2023. "Investigation on the optimal GDL thickness design for PEMFCs considering channel/rib geometry matching and operating conditions," Energy, Elsevier, vol. 282(C).
    4. Zhao, Jian & Shahgaldi, Samaneh & Alaefour, Ibrahim & Xu, Qian & Li, Xianguo, 2018. "Gas permeability of catalyzed electrodes in polymer electrolyte membrane fuel cells," Applied Energy, Elsevier, vol. 209(C), pages 203-210.
    5. Kong, Im Mo & Jung, Aeri & Kim, Young Sang & Kim, Min Soo, 2017. "Numerical investigation on double gas diffusion backing layer functionalized on water removal in a proton exchange membrane fuel cell," Energy, Elsevier, vol. 120(C), pages 478-487.
    6. Kim, Jaeyeon & Kim, Hyeok & Song, Hyeonjun & Kim, Dasol & Kim, Geon Hwi & Im, Dasom & Jeong, Youngjin & Park, Taehyun, 2021. "Carbon nanotube sheet as a microporous layer for proton exchange membrane fuel cells," Energy, Elsevier, vol. 227(C).
    7. Xing, Lei & Shi, Weidong & Su, Huaneng & Xu, Qian & Das, Prodip K. & Mao, Baodong & Scott, Keith, 2019. "Membrane electrode assemblies for PEM fuel cells: A review of functional graded design and optimization," Energy, Elsevier, vol. 177(C), pages 445-464.
    8. Kong, Im Mo & Choi, Jong Won & Kim, Sung Il & Lee, Eun Sook & Kim, Min Soo, 2015. "Experimental study on the self-humidification effect in proton exchange membrane fuel cells containing double gas diffusion backing layer," Applied Energy, Elsevier, vol. 145(C), pages 345-353.
    9. Wang, Qing-Hui & Yang, Song & Zhou, Wei & Li, Jing-Rong & Xu, Zhi-Jia & Ke, Yu-Zhi & Yu, Wei & Hu, Guang-Hua, 2018. "Optimizing the porosity configuration of porous copper fiber sintered felt for methanol steam reforming micro-reactor based on flow distribution," Applied Energy, Elsevier, vol. 216(C), pages 243-261.
    10. Rakhshanpouri, S. & Rowshanzamir, S., 2013. "Water transport through a PEM (proton exchange membrane) fuel cell in a seven-layer model," Energy, Elsevier, vol. 50(C), pages 220-231.
    11. Abdollahzadeh, M. & Ribeirinha, P. & Boaventura, M. & Mendes, A., 2018. "Three-dimensional modeling of PEMFC with contaminated anode fuel," Energy, Elsevier, vol. 152(C), pages 939-959.
    12. Guo, Lingyi & Chen, Li & Zhang, Ruiyuan & Peng, Ming & Tao, Wen-Quan, 2022. "Pore-scale simulation of two-phase flow and oxygen reactive transport in gas diffusion layer of proton exchange membrane fuel cells: Effects of nonuniform wettability and porosity," Energy, Elsevier, vol. 253(C).
    13. Mo, Jingke & Kang, Zhenye & Yang, Gaoqiang & Retterer, Scott T. & Cullen, David A. & Toops, Todd J. & Green, Johney B. & Zhang, Feng-Yuan, 2016. "Thin liquid/gas diffusion layers for high-efficiency hydrogen production from water splitting," Applied Energy, Elsevier, vol. 177(C), pages 817-822.
    14. Xu, Liangfei & Fang, Chuan & Hu, Junming & Cheng, Siliang & Li, Jianqiu & Ouyang, Minggao & Lehnert, Werner, 2017. "Parameter extraction of polymer electrolyte membrane fuel cell based on quasi-dynamic model and periphery signals," Energy, Elsevier, vol. 122(C), pages 675-690.
    15. Ebrahimi, Sasan & Ghorbani, Babak & Vijayaraghavan, Krishna, 2017. "Optimization of catalyst distribution along PEMFC channel through a numerical two-phase model and genetic algorithm," Renewable Energy, Elsevier, vol. 113(C), pages 846-854.
    16. Namazi, Mohammadmehdi & Nayebi, Mohammadreza & Isazadeh, Amin & Modarresi, Ali & Marzbali, Iman Ghasemi & Hosseinalipour, Seyed Mostafa, 2022. "Experimental and numerical study of catalytic combustion and pore-scale numerical study of mass diffusion in high porosity fibrous porous media," Energy, Elsevier, vol. 238(PB).
    17. Tian, Cong & Yuan, Fang & Deng, Tianlun & He, Qianhui & Hu, Cen & Chen, Yong & Liu, Wei, 2024. "Coupled optimization of auxiliary channels and porosity gradient of GDL for PEMFC," Energy, Elsevier, vol. 301(C).
    18. Blandy Pamplona Solis & Julio César Cruz Argüello & Leopoldo Gómez Barba & Mayra Polett Gurrola & Zakaryaa Zarhri & Danna Lizeth TrejoArroyo, 2019. "Bibliometric Analysis of the Mass Transport in a Gas Diffusion Layer in PEM Fuel Cells," Sustainability, MDPI, vol. 11(23), pages 1-18, November.
    19. Ahmad Ijaz & SeyedSepehr Mostafayi & Mohammadreza Esmaeilirad & Mohammad Asadi & Javad Abbasian & Hamid Arastoopour, 2025. "Numerical Modeling of CO 2 Reduction Reactions in a Batch Cell with Different Working Electrodes," Sustainability, MDPI, vol. 17(3), pages 1-25, January.
    20. Li, Yuehua & Pei, Pucheng & Wu, Ziyao & Ren, Peng & Jia, Xiaoning & Chen, Dongfang & Huang, Shangwei, 2018. "Approaches to avoid flooding in association with pressure drop in proton exchange membrane fuel cells," Applied Energy, Elsevier, vol. 224(C), pages 42-51.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:13:y:2025:i:13:p:2077-:d:1685750. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.