IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i2p912-d1034661.html
   My bibliography  Save this article

Entropy Generation of CuO-Water Nanofluid in a Cavity with an Intruded Rectangular Fin

Author

Listed:
  • Periklis Mountrichas

    (School of Engineering, Newcastle University, Newcastle NE1 7RU, UK)

  • Wendi Zhao

    (School of Engineering, Newcastle University, Newcastle NE1 7RU, UK)

  • Mehtab Singh Randeva

    (School of Engineering, Newcastle University, Newcastle NE1 7RU, UK)

  • Prodip K. Das

    (School of Engineering, Newcastle University, Newcastle NE1 7RU, UK)

Abstract

Entropy generation and heat transfer in cavities have received significant interest due to the ever-increasing demand for enhancing thermal performances in many scientific and engineering fields. In particular, nanofluids are being used increasingly in engineering applications and real-life problems, as they exhibit significantly better thermal properties than basic heat transfer fluids, for example, water, oil, or ethylene glycol. This study investigates the entropy generation and heat transfer of a nanofluid in a confined cavity with a moving top wall and a rectangular fin at the bottom. Here, a macro-homogeneous model based on a previously developed model is employed for investigating the mixed convective flow and heat transfer of CuO-water nanofluid. Various fin geometries, Rayleigh numbers, Reynolds numbers, and nanofluid concentrations have been employed. Present results indicate that the heat transfer rate can be improved, while entropy generation can be minimized using nanofluids instead of conventional heat transfer fluids.

Suggested Citation

  • Periklis Mountrichas & Wendi Zhao & Mehtab Singh Randeva & Prodip K. Das, 2023. "Entropy Generation of CuO-Water Nanofluid in a Cavity with an Intruded Rectangular Fin," Energies, MDPI, vol. 16(2), pages 1-15, January.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:2:p:912-:d:1034661
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/2/912/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/2/912/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Das, Prodip K. & Li, Xianguo & Liu, Zhong-Sheng, 2010. "Effective transport coefficients in PEM fuel cell catalyst and gas diffusion layers: Beyond Bruggeman approximation," Applied Energy, Elsevier, vol. 87(9), pages 2785-2796, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hwang, Jenn-Jiang, 2013. "Thermal control and performance assessment of a proton exchanger membrane fuel cell generator," Applied Energy, Elsevier, vol. 108(C), pages 184-193.
    2. Liu, Huize & Hu, Zunyan & Li, Jianqiu & Xu, Liangfei & Shao, Yangbin & Ouyang, Minggao, 2023. "Investigation on the optimal GDL thickness design for PEMFCs considering channel/rib geometry matching and operating conditions," Energy, Elsevier, vol. 282(C).
    3. Zhao, Jian & Shahgaldi, Samaneh & Alaefour, Ibrahim & Xu, Qian & Li, Xianguo, 2018. "Gas permeability of catalyzed electrodes in polymer electrolyte membrane fuel cells," Applied Energy, Elsevier, vol. 209(C), pages 203-210.
    4. Ashorynejad, Hamid Reza & Javaherdeh, Koroush, 2019. "Evaluation of passive and active lattice Boltzmann method for PEM fuel cell modeling," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 535(C).
    5. Zhang, Hongtao & Li, Xianguo & Liu, Xinzhi & Yan, Jinyue, 2019. "Enhancing fuel cell durability for fuel cell plug-in hybrid electric vehicles through strategic power management," Applied Energy, Elsevier, vol. 241(C), pages 483-490.
    6. Namazi, Mohammadmehdi & Nayebi, Mohammadreza & Isazadeh, Amin & Modarresi, Ali & Marzbali, Iman Ghasemi & Hosseinalipour, Seyed Mostafa, 2022. "Experimental and numerical study of catalytic combustion and pore-scale numerical study of mass diffusion in high porosity fibrous porous media," Energy, Elsevier, vol. 238(PB).
    7. Aidan Robinson & Prodip K. Das, 2022. "Biomimetic and Constructal Design of Alveolus-Inspired Extended Surfaces for Heat Dispersion," Energies, MDPI, vol. 16(1), pages 1-16, December.
    8. Vasile, Nicolò S. & Doherty, Ronan & Monteverde Videla, Alessandro H.A. & Specchia, Stefania, 2016. "3D multi-physics modeling of a gas diffusion electrode for oxygen reduction reaction for electrochemical energy conversion in PEM fuel cells," Applied Energy, Elsevier, vol. 175(C), pages 435-450.
    9. Durán, E. & Andújar, J.M. & Segura, F. & Barragán, A.J., 2011. "A high-flexibility DC load for fuel cell and solar arrays power sources based on DC-DC converters," Applied Energy, Elsevier, vol. 88(5), pages 1690-1702, May.
    10. Xing, Lei & Das, Prodip K. & Song, Xueguan & Mamlouk, Mohamed & Scott, Keith, 2015. "Numerical analysis of the optimum membrane/ionomer water content of PEMFCs: The interaction of Nafion® ionomer content and cathode relative humidity," Applied Energy, Elsevier, vol. 138(C), pages 242-257.
    11. Ruzzante, Pascal & Li, Xianguo, 2023. "3D hybrid stochastic reconstruction of catalyst layers in proton exchange membrane fuel cells from 2D images," Energy, Elsevier, vol. 281(C).
    12. Jiao, Daokuan & Jiao, Kui & Zhong, Shenghui & Du, Qing, 2022. "Investigations on heat and mass transfer in gas diffusion layers of PEMFC with a gas–liquid-solid coupled model," Applied Energy, Elsevier, vol. 316(C).
    13. Ferreira, Rui B. & Falcão, D.S. & Oliveira, V.B. & Pinto, A.M.F.R., 2017. "1D+3D two-phase flow numerical model of a proton exchange membrane fuel cell," Applied Energy, Elsevier, vol. 203(C), pages 474-495.
    14. Shingjiang Jessie Lue & Nai-Yuan Liu & Selvaraj Rajesh Kumar & Kevin Chi-Yang Tseng & Bo-Yan Wang & Chieh-Hsin Leung, 2017. "Experimental and One-Dimensional Mathematical Modeling of Different Operating Parameters in Direct Formic Acid Fuel Cells," Energies, MDPI, vol. 10(12), pages 1-14, November.
    15. Andersson, M. & Beale, S.B. & Espinoza, M. & Wu, Z. & Lehnert, W., 2016. "A review of cell-scale multiphase flow modeling, including water management, in polymer electrolyte fuel cells," Applied Energy, Elsevier, vol. 180(C), pages 757-778.
    16. Zamel, Nada & Li, Xianguo & Shen, Jun, 2012. "Numerical estimation of the effective electrical conductivity in carbon paper diffusion media," Applied Energy, Elsevier, vol. 93(C), pages 39-44.
    17. Pan, Mingzhang & Li, Chao & Liao, Jinyang & Lei, Han & Pan, Chengjie & Meng, Xianpan & Huang, Haozhong, 2020. "Design and modeling of PEM fuel cell based on different flow fields," Energy, Elsevier, vol. 207(C).
    18. Zhang, Heng & Xiao, Liusheng & Chuang, Po-Ya Abel & Djilali, Ned & Sui, Pang-Chieh, 2019. "Coupled stress–strain and transport in proton exchange membrane fuel cell with metallic bipolar plates," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    19. Najiyah Safwa Khashi’ie & Norihan Md Arifin & Ioan Pop, 2020. "Mixed Convective Stagnation Point Flow towards a Vertical Riga Plate in Hybrid Cu-Al 2 O 3 /Water Nanofluid," Mathematics, MDPI, vol. 8(6), pages 1-21, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:2:p:912-:d:1034661. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.