IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v13y2025i10p1605-d1655390.html
   My bibliography  Save this article

Finite Mixture Models: A Key Tool for Reliability Analyses

Author

Listed:
  • Marko Nagode

    (Faculty of Mechanical Engineering, University of Ljubljana, 1000 Ljubljana, Slovenia)

  • Simon Oman

    (Faculty of Mechanical Engineering, University of Ljubljana, 1000 Ljubljana, Slovenia)

  • Jernej Klemenc

    (Faculty of Mechanical Engineering, University of Ljubljana, 1000 Ljubljana, Slovenia)

  • Branislav Panić

    (Faculty of Mechanical Engineering, University of Ljubljana, 1000 Ljubljana, Slovenia)

Abstract

As system complexity increases, accurately capturing true system reliability becomes increasingly challenging. Rather than relying on exact analytical solutions, it is often more practical to use approximations based on observed time-to-failure data. Finite mixture models provide a flexible framework for approximating arbitrary probability density functions and are well suited for reliability modelling. A critical factor in achieving accurate approximations is the choice of parameter estimation algorithm. The REBMIX&EM algorithm, implemented in the rebmix R package, generally performs well but struggles when components of the finite mixture model overlap. To address this issue, we revisit key steps of the REBMIX algorithm and propose improvements. With these improvements, we derive parameter estimators for finite mixture models based on three parametric families commonly applied in reliability analysis: lognormal, gamma, and Weibull. We conduct a comprehensive simulation study across four system configurations, using lognormal, gamma, and Weibull distributions with varying parameters as system component time-to-failure distributions. Performance is benchmarked against five widely used R packages for finite mixture modelling. The results confirm that our proposal improves both estimation accuracy and computational efficiency, consistently outperforming existing packages. We also demonstrate that finite mixture models can approximate analytical reliability solutions with fewer components than the actual number of system components. Our proposals are also validated using a practical example from Backblaze hard drive data. All improvements are included in the open-source rebmix R package, with complete source code provided to support the broader adoption of the R programming language in reliability analysis.

Suggested Citation

  • Marko Nagode & Simon Oman & Jernej Klemenc & Branislav Panić, 2025. "Finite Mixture Models: A Key Tool for Reliability Analyses," Mathematics, MDPI, vol. 13(10), pages 1-24, May.
  • Handle: RePEc:gam:jmathe:v:13:y:2025:i:10:p:1605-:d:1655390
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/13/10/1605/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/13/10/1605/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Chan, Jianpeng & Papaioannou, Iason & Straub, Daniel, 2024. "Bayesian improved cross entropy method with categorical mixture models for network reliability assessment," Reliability Engineering and System Safety, Elsevier, vol. 252(C).
    2. Leisch, Friedrich, 2004. "FlexMix: A General Framework for Finite Mixture Models and Latent Class Regression in R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 11(i08).
    3. Branislav Panić & Jernej Klemenc & Marko Nagode, 2020. "Improved Initialization of the EM Algorithm for Mixture Model Parameter Estimation," Mathematics, MDPI, vol. 8(3), pages 1-29, March.
    4. Zhu, Tiefeng, 2020. "Reliability estimation for two-parameter Weibull distribution under block censoring," Reliability Engineering and System Safety, Elsevier, vol. 203(C).
    5. Li, Mingyang & Wang, Zequn, 2019. "Surrogate model uncertainty quantification for reliability-based design optimization," Reliability Engineering and System Safety, Elsevier, vol. 192(C).
    6. Ramezani, Reza & Clemente, Juan Antonio & Franco, Francisco J., 2020. "Analytical reliability estimation of SRAM-based FPGA designs against single-bit and multiple-cell upsets," Reliability Engineering and System Safety, Elsevier, vol. 202(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Christian Kleiber & Achim Zeileis, 2016. "Visualizing Count Data Regressions Using Rootograms," The American Statistician, Taylor & Francis Journals, vol. 70(3), pages 296-303, July.
    2. Lebret, Rémi & Iovleff, Serge & Langrognet, Florent & Biernacki, Christophe & Celeux, Gilles & Govaert, Gérard, 2015. "Rmixmod: The R Package of the Model-Based Unsupervised, Supervised, and Semi-Supervised Classification Mixmod Library," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 67(i06).
    3. Grün, Bettina & Kosmidis, Ioannis & Zeileis, Achim, 2012. "Extended Beta Regression in R: Shaken, Stirred, Mixed, and Partitioned," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 48(i11).
    4. Yang, Meide & Zhang, Dequan & Jiang, Chao & Han, Xu & Li, Qing, 2021. "A hybrid adaptive Kriging-based single loop approach for complex reliability-based design optimization problems," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    5. Peter Willemé, 2017. "Working Paper 14-17 - Modelling unobserved heterogeneity in distribution - Finite mixtures of the Johnson family of distributions," Working Papers 1714, Federal Planning Bureau, Belgium.
    6. Marc A. Scott & Kaushik Mohan & Jacques‐Antoine Gauthier, 2020. "Model‐based clustering and analysis of life history data," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 183(3), pages 1231-1251, June.
    7. Fabian Dvorak, 2020. "stratEst: Strategy Estimation in R," TWI Research Paper Series 119, Thurgauer Wirtschaftsinstitut, Universität Konstanz.
    8. Rocchetta, Roberto & Crespo, Luis G., 2021. "A scenario optimization approach to reliability-based and risk-based design: Soft-constrained modulation of failure probability bounds," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    9. Ashot Mirzoyan & Anastasia Galich & Ekaterina Siniakova, 2025. "Individual characteristics innovation activity of entrepreneurs: Who creates innovations in different countries?," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 78, pages 66-89.
    10. Yang, Shunkun & Shao, Qi & Bian, Chong, 2022. "Reliability analysis of ensemble fault tolerance for soft error mitigation against complex radiation effect," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
    11. Grun, Bettina & Leisch, Friedrich, 2007. "Fitting finite mixtures of generalized linear regressions in R," Computational Statistics & Data Analysis, Elsevier, vol. 51(11), pages 5247-5252, July.
    12. Mao, Jianfeng & Li, Zheng & Yu, Zhiwu & Hu, Lianjun & Khan, Mansoor & Wu, Jun, 2025. "A novel hybrid approach combining PDEM and bayesian optimization deep learning for stochastic vibration analysis in train-track-bridge coupled system," Reliability Engineering and System Safety, Elsevier, vol. 257(PA).
    13. Song, Zhouzhou & Zhang, Hanyu & Liu, Zhao & Zhu, Ping, 2023. "A two-stage Kriging estimation variance reduction method for efficient time-variant reliability-based design optimization," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    14. Branislav Panić & Marko Nagode & Jernej Klemenc & Simon Oman, 2022. "On Methods for Merging Mixture Model Components Suitable for Unsupervised Image Segmentation Tasks," Mathematics, MDPI, vol. 10(22), pages 1-22, November.
    15. Frick, Hannah & Strobl, Carolin & Leisch, Friedrich & Zeileis, Achim, 2012. "Flexible Rasch Mixture Models with Package psychomix," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 48(i07).
    16. Raoofpanah, Iman & Zamudio, César & Groening, Christopher, 2023. "Review reader segmentation based on the heterogeneous impacts of review and reviewer attributes on review helpfulness: A study involving ZIP code data," Journal of Retailing and Consumer Services, Elsevier, vol. 72(C).
    17. Salvatore Ingrassia & Simona Minotti & Giorgio Vittadini, 2012. "Local Statistical Modeling via a Cluster-Weighted Approach with Elliptical Distributions," Journal of Classification, Springer;The Classification Society, vol. 29(3), pages 363-401, October.
    18. Rivier, M. & Congedo, P.M., 2022. "Surrogate-Assisted Bounding-Box approach applied to constrained multi-objective optimisation under uncertainty," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
    19. Hao, Peng & Yang, Hao & Wang, Yutian & Liu, Xuanxiu & Wang, Bo & Li, Gang, 2021. "Efficient reliability-based design optimization of composite structures via isogeometric analysis," Reliability Engineering and System Safety, Elsevier, vol. 209(C).
    20. Krzysztof Rusek & Agnieszka Kleszcz & Albert Cabellos-Aparicio, 2023. "Bayesian inference of spatial and temporal relations in AI patents for EU countries," Scientometrics, Springer;Akadémiai Kiadó, vol. 128(6), pages 3313-3335, June.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:13:y:2025:i:10:p:1605-:d:1655390. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.