IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v11y2023i9p2018-d1131434.html
   My bibliography  Save this article

A Review of Quantum-Inspired Metaheuristic Algorithms for Automatic Clustering

Author

Listed:
  • Alokananda Dey

    (RCC Institute of Information Technology, Kolkata 700015, West Bengal, India
    These authors contributed equally to this work.)

  • Siddhartha Bhattacharyya

    (Rajnagar Mahavidyalaya, Rajnagar 731130, Birbhum, India
    Department of Data Analysis, Algebra University College, Catholic University of Croatia, 10000 Zagreb, Croatia
    These authors contributed equally to this work.)

  • Sandip Dey

    (Sukanta Mahavidyalaya, Dhupguri 735210, Jalpaiguri, India
    These authors contributed equally to this work.)

  • Debanjan Konar

    (Center for Advanced Systems Understanding (CASUS), Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 02826 Görlitz, Germany
    These authors contributed equally to this work.)

  • Jan Platos

    (Faculty of Electrical Engineering and Computer Science, VŠB-Technical University of Ostrava, 70800 Poruba-Ostrava, Czech Republic
    These authors contributed equally to this work.)

  • Vaclav Snasel

    (Faculty of Electrical Engineering and Computer Science, VŠB-Technical University of Ostrava, 70800 Poruba-Ostrava, Czech Republic
    These authors contributed equally to this work.)

  • Leo Mrsic

    (Department of Data Analysis, Algebra University College, Catholic University of Croatia, 10000 Zagreb, Croatia
    Public Research Institute Rudolfovo Scientific and Technological Centre, 8000 Novo Mesto, Slovenia
    These authors contributed equally to this work.)

  • Pankaj Pal

    (RCC Institute of Information Technology, Kolkata 700015, West Bengal, India
    These authors contributed equally to this work.)

Abstract

In real-world scenarios, identifying the optimal number of clusters in a dataset is a difficult task due to insufficient knowledge. Therefore, the indispensability of sophisticated automatic clustering algorithms for this purpose has been contemplated by some researchers. Several automatic clustering algorithms assisted by quantum-inspired metaheuristics have been developed in recent years. However, the literature lacks definitive documentation of the state-of-the-art quantum-inspired metaheuristic algorithms for automatically clustering datasets. This article presents a brief overview of the automatic clustering process to establish the importance of making the clustering process automatic. The fundamental concepts of the quantum computing paradigm are also presented to highlight the utility of quantum-inspired algorithms. This article thoroughly analyses some algorithms employed to address the automatic clustering of various datasets. The reviewed algorithms were classified according to their main sources of inspiration. In addition, some representative works of each classification were chosen from the existing works. Thirty-six such prominent algorithms were further critically analysed based on their aims, used mechanisms, data specifications, merits and demerits. Comparative results based on the performance and optimal computational time are also presented to critically analyse the reviewed algorithms. As such, this article promises to provide a detailed analysis of the state-of-the-art quantum-inspired metaheuristic algorithms, while highlighting their merits and demerits.

Suggested Citation

  • Alokananda Dey & Siddhartha Bhattacharyya & Sandip Dey & Debanjan Konar & Jan Platos & Vaclav Snasel & Leo Mrsic & Pankaj Pal, 2023. "A Review of Quantum-Inspired Metaheuristic Algorithms for Automatic Clustering," Mathematics, MDPI, vol. 11(9), pages 1-44, April.
  • Handle: RePEc:gam:jmathe:v:11:y:2023:i:9:p:2018-:d:1131434
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/11/9/2018/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/11/9/2018/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Mohammad H. Nadimi-Shahraki & Ali Fatahi & Hoda Zamani & Seyedali Mirjalili, 2022. "Binary Approaches of Quantum-Based Avian Navigation Optimizer to Select Effective Features from High-Dimensional Medical Data," Mathematics, MDPI, vol. 10(15), pages 1-30, August.
    2. Cheng, Qing & Lu, Xin & Liu, Zhong & Huang, Jincai & Cheng, Guangquan, 2016. "Spatial clustering with Density-Ordered tree," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 460(C), pages 188-200.
    3. Ahmad Abubaker & Adam Baharum & Mahmoud Alrefaei, 2015. "Automatic Clustering Using Multi-objective Particle Swarm and Simulated Annealing," PLOS ONE, Public Library of Science, vol. 10(7), pages 1-23, July.
    4. Christos Voudouris & Edward P.K. Tsang & Abdullah Alsheddy, 2010. "Guided Local Search," International Series in Operations Research & Management Science, in: Michel Gendreau & Jean-Yves Potvin (ed.), Handbook of Metaheuristics, chapter 0, pages 321-361, Springer.
    5. Stephen Johnson, 1967. "Hierarchical clustering schemes," Psychometrika, Springer;The Psychometric Society, vol. 32(3), pages 241-254, September.
    6. Alexandre Linhares & José R. A. Torreão, 1998. "Microcanonical Optimization Applied to the Traveling Salesman Problem," International Journal of Modern Physics C (IJMPC), World Scientific Publishing Co. Pte. Ltd., vol. 9(01), pages 133-146.
    7. Shuang Yin & Guojun Gan & Emiliano A. Valdez & Jeyaraj Vadiveloo, 2021. "Applications of Clustering with Mixed Type Data in Life Insurance," Risks, MDPI, vol. 9(3), pages 1-19, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. repec:ers:journl:v:xxiv:y:2021:i:4b:p:659-667 is not listed on IDEAS
    2. Kim, Junyung & Shah, Asad Ullah Amin & Kang, Hyun Gook, 2020. "Dynamic risk assessment with bayesian network and clustering analysis," Reliability Engineering and System Safety, Elsevier, vol. 201(C).
    3. David G Mets & Michael S Brainard, 2018. "An automated approach to the quantitation of vocalizations and vocal learning in the songbird," PLOS Computational Biology, Public Library of Science, vol. 14(8), pages 1-29, August.
    4. Noah E. Friedkin, 1984. "Structural Cohesion and Equivalence Explanations of Social Homogeneity," Sociological Methods & Research, , vol. 12(3), pages 235-261, February.
    5. David Matesanz Gomez & Guillermo J. Ortega & Benno Torgler, 2011. "Measuring globalization: A hierarchical network approach," CREMA Working Paper Series 2011-11, Center for Research in Economics, Management and the Arts (CREMA).
    6. Balepur, Prashant Narayan, 1998. "Impacts of Computer-Mediated Communication on Travel and Communication Patterns: The Davis Community Network Study," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt6cb1f85c, Institute of Transportation Studies, UC Berkeley.
    7. Lisa Price, 2001. "Demystifying farmers' entomological and pest management knowledge: A methodology for assessing the impacts on knowledge from IPM-FFS and NES interventions," Agriculture and Human Values, Springer;The Agriculture, Food, & Human Values Society (AFHVS), vol. 18(2), pages 153-176, June.
    8. Elisa Frutos-Bernal & Ángel Martín del Rey & Irene Mariñas-Collado & María Teresa Santos-Martín, 2022. "An Analysis of Travel Patterns in Barcelona Metro Using Tucker3 Decomposition," Mathematics, MDPI, vol. 10(7), pages 1-17, March.
    9. Geert Soete & Wayne DeSarbo & J. Carroll, 1985. "Optimal variable weighting for hierarchical clustering: An alternating least-squares algorithm," Journal of Classification, Springer;The Classification Society, vol. 2(1), pages 173-192, December.
    10. Teh, Boon Kin & Goo, Yik Wen & Lian, Tong Wei & Ong, Wei Guang & Choi, Wen Ting & Damodaran, Mridula & Cheong, Siew Ann, 2015. "The Chinese Correction of February 2007: How financial hierarchies change in a market crash," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 424(C), pages 225-241.
    11. Yoshio Takane & Forrest Young & Jan Leeuw, 1977. "Nonmetric individual differences multidimensional scaling: An alternating least squares method with optimal scaling features," Psychometrika, Springer;The Psychometric Society, vol. 42(1), pages 7-67, March.
    12. Wentao Qu & Xianchao Xiu & Huangyue Chen & Lingchen Kong, 2023. "A Survey on High-Dimensional Subspace Clustering," Mathematics, MDPI, vol. 11(2), pages 1-39, January.
    13. Taggart, J. H., 1999. "MNC subsidiary performance, risk, and corporate expectations," International Business Review, Elsevier, vol. 8(2), pages 233-255, April.
    14. Sorin Alexandru Ungureanu & Diana Andreea Mandricel & Bogdan Ioan Coculescu & Ionica Oncioiu, 2020. "Prevention in Dental Medicine. Case Studies and Explanations Regarding the Cost-Benefit Ratio," Academic Journal of Economic Studies, Faculty of Finance, Banking and Accountancy Bucharest,"Dimitrie Cantemir" Christian University Bucharest, vol. 6(2), pages 135-147, June.
    15. Fang, Yixin & Wang, Junhui, 2011. "Penalized cluster analysis with applications to family data," Computational Statistics & Data Analysis, Elsevier, vol. 55(6), pages 2128-2136, June.
    16. Xingyin Duan & Xiaobo Wu & Jie Ge & Li Deng & Liang Shen & Jingwen Xu & Xiaoying Xu & Qin He & Yixin Chen & Xuesong Gao & Bing Li, 2024. "A Novel Hierarchical Clustering Sequential Forward Feature Selection Method for Paddy Rice Agriculture Mapping Based on Time-Series Images," Agriculture, MDPI, vol. 14(9), pages 1-20, August.
    17. Simon Blanchard & Wayne DeSarbo, 2013. "A New Zero-Inflated Negative Binomial Methodology for Latent Category Identification," Psychometrika, Springer;The Psychometric Society, vol. 78(2), pages 322-340, April.
    18. Satoru Yokoyama & Atsuho Nakayama & Akinori Okada, 2009. "One-mode three-way overlapping cluster analysis," Computational Statistics, Springer, vol. 24(1), pages 165-179, February.
    19. Vincent S. Tseng & Hsieh-Hui Yu & Shih-Chiang Yang, 2009. "Efficient mining of multilevel gene association rules from microarray and gene ontology," Information Systems Frontiers, Springer, vol. 11(4), pages 433-447, September.
    20. repec:jss:jstsof:35:i07 is not listed on IDEAS
    21. Thomas J. Lampoltshammer & Valerie Albrecht & Corinna Raith, 2021. "Teaching Digital Sustainability in Higher Education from a Transdisciplinary Perspective," Sustainability, MDPI, vol. 13(21), pages 1-21, October.
    22. Sumin Yu & Zhijiao Du & Xuanhua Xu, 2021. "Hierarchical Punishment-Driven Consensus Model for Probabilistic Linguistic Large-Group Decision Making with Application to Global Supplier Selection," Group Decision and Negotiation, Springer, vol. 30(6), pages 1343-1372, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:11:y:2023:i:9:p:2018-:d:1131434. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.