IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0130995.html
   My bibliography  Save this article

Automatic Clustering Using Multi-objective Particle Swarm and Simulated Annealing

Author

Listed:
  • Ahmad Abubaker
  • Adam Baharum
  • Mahmoud Alrefaei

Abstract

This paper puts forward a new automatic clustering algorithm based on Multi-Objective Particle Swarm Optimization and Simulated Annealing, “MOPSOSA”. The proposed algorithm is capable of automatic clustering which is appropriate for partitioning datasets to a suitable number of clusters. MOPSOSA combines the features of the multi-objective based particle swarm optimization (PSO) and the Multi-Objective Simulated Annealing (MOSA). Three cluster validity indices were optimized simultaneously to establish the suitable number of clusters and the appropriate clustering for a dataset. The first cluster validity index is centred on Euclidean distance, the second on the point symmetry distance, and the last cluster validity index is based on short distance. A number of algorithms have been compared with the MOPSOSA algorithm in resolving clustering problems by determining the actual number of clusters and optimal clustering. Computational experiments were carried out to study fourteen artificial and five real life datasets.

Suggested Citation

  • Ahmad Abubaker & Adam Baharum & Mahmoud Alrefaei, 2015. "Automatic Clustering Using Multi-objective Particle Swarm and Simulated Annealing," PLOS ONE, Public Library of Science, vol. 10(7), pages 1-23, July.
  • Handle: RePEc:plo:pone00:0130995
    DOI: 10.1371/journal.pone.0130995
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0130995
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0130995&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0130995?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Robert Tibshirani & Guenther Walther & Trevor Hastie, 2001. "Estimating the number of clusters in a data set via the gap statistic," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 63(2), pages 411-423.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Clarisse Dhaenens & Laetitia Jourdan, 2022. "Metaheuristics for data mining: survey and opportunities for big data," Annals of Operations Research, Springer, vol. 314(1), pages 117-140, July.
    2. Clarisse Dhaenens & Laetitia Jourdan, 2019. "Metaheuristics for data mining," 4OR, Springer, vol. 17(2), pages 115-139, June.
    3. Congcong Gong & Haisong Chen & Weixiong He & Zhanliang Zhang, 2017. "Improved multi-objective clustering algorithm using particle swarm optimization," PLOS ONE, Public Library of Science, vol. 12(12), pages 1-19, December.
    4. Alokananda Dey & Siddhartha Bhattacharyya & Sandip Dey & Debanjan Konar & Jan Platos & Vaclav Snasel & Leo Mrsic & Pankaj Pal, 2023. "A Review of Quantum-Inspired Metaheuristic Algorithms for Automatic Clustering," Mathematics, MDPI, vol. 11(9), pages 1-44, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Thiemo Fetzer & Samuel Marden, 2017. "Take What You Can: Property Rights, Contestability and Conflict," Economic Journal, Royal Economic Society, vol. 0(601), pages 757-783, May.
    2. Daniel Agness & Travis Baseler & Sylvain Chassang & Pascaline Dupas & Erik Snowberg, 2022. "Valuing the Time of the Self-Employed," Working Papers 2022-2, Princeton University. Economics Department..
    3. Batool, Fatima & Hennig, Christian, 2021. "Clustering with the Average Silhouette Width," Computational Statistics & Data Analysis, Elsevier, vol. 158(C).
    4. Nicoleta Serban & Huijing Jiang, 2012. "Multilevel Functional Clustering Analysis," Biometrics, The International Biometric Society, vol. 68(3), pages 805-814, September.
    5. Orietta Nicolis & Jean Paul Maidana & Fabian Contreras & Danilo Leal, 2024. "Analyzing the Impact of COVID-19 on Economic Sustainability: A Clustering Approach," Sustainability, MDPI, vol. 16(4), pages 1-30, February.
    6. Li, Pai-Ling & Chiou, Jeng-Min, 2011. "Identifying cluster number for subspace projected functional data clustering," Computational Statistics & Data Analysis, Elsevier, vol. 55(6), pages 2090-2103, June.
    7. Yaeji Lim & Hee-Seok Oh & Ying Kuen Cheung, 2019. "Multiscale Clustering for Functional Data," Journal of Classification, Springer;The Classification Society, vol. 36(2), pages 368-391, July.
    8. Forzani, Liliana & Gieco, Antonella & Tolmasky, Carlos, 2017. "Likelihood ratio test for partial sphericity in high and ultra-high dimensions," Journal of Multivariate Analysis, Elsevier, vol. 159(C), pages 18-38.
    9. Yujia Li & Xiangrui Zeng & Chien‐Wei Lin & George C. Tseng, 2022. "Simultaneous estimation of cluster number and feature sparsity in high‐dimensional cluster analysis," Biometrics, The International Biometric Society, vol. 78(2), pages 574-585, June.
    10. Vojtech Blazek & Michal Petruzela & Tomas Vantuch & Zdenek Slanina & Stanislav Mišák & Wojciech Walendziuk, 2020. "The Estimation of the Influence of Household Appliances on the Power Quality in a Microgrid System," Energies, MDPI, vol. 13(17), pages 1-21, August.
    11. Andrew Clark & Alexander Mihailov & Michael Zargham, 2021. "Complex Systems Modeling of Community Inclusion Currencies," Economics Discussion Papers em-dp2021-06, Department of Economics, University of Reading.
    12. Nicoleta Serban, 2008. "Estimating and clustering curves in the presence of heteroscedastic errors," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 20(7), pages 553-571.
    13. Caruso, Germán & Scartascini, Carlos & Tommasi, Mariano, 2015. "Are we all playing the same game? The economic effects of constitutions depend on the degree of institutionalization," European Journal of Political Economy, Elsevier, vol. 38(C), pages 212-228.
    14. Alessandro Crimi & Olivier Commowick & Adil Maarouf & Jean-Christophe Ferré & Elise Bannier & Ayman Tourbah & Isabelle Berry & Jean-Philippe Ranjeva & Gilles Edan & Christian Barillot, 2014. "Predictive Value of Imaging Markers at Multiple Sclerosis Disease Onset Based on Gadolinium- and USPIO-Enhanced MRI and Machine Learning," PLOS ONE, Public Library of Science, vol. 9(4), pages 1-10, April.
    15. Mehmet Çağlar & Cem Gürler, 2022. "Sustainable Development Goals: A cluster analysis of worldwide countries," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(6), pages 8593-8624, June.
    16. Elizabeth Tipton & Robert B. Olsen, "undated". "Enhancing the Generalizability of Impact Studies in Education," Mathematica Policy Research Reports 35d5625333dc480aba9765b3b, Mathematica Policy Research.
    17. Cyril Atkinson-Clement & Eléonore Pigalle, 2021. "What can we learn from Covid-19 pandemic’s impact on human behaviour? The case of France’s lockdown," Palgrave Communications, Palgrave Macmillan, vol. 8(1), pages 1-12, December.
    18. Jelle R Dalenberg & Luca Nanetti & Remco J Renken & René A de Wijk & Gert J ter Horst, 2014. "Dealing with Consumer Differences in Liking during Repeated Exposure to Food; Typical Dynamics in Rating Behavior," PLOS ONE, Public Library of Science, vol. 9(3), pages 1-11, March.
    19. Daniel Lewis & Davide Melcangi & Laura Pilossoph, 2019. "Latent Heterogeneity in the Marginal Propensity to Consume," 2019 Meeting Papers 519, Society for Economic Dynamics.
    20. Chun-Xia Zhang & Jiang-She Zhang & Sang-Woon Kim, 2016. "PBoostGA: pseudo-boosting genetic algorithm for variable ranking and selection," Computational Statistics, Springer, vol. 31(4), pages 1237-1262, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0130995. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.