IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v11y2023i7p1661-d1111826.html
   My bibliography  Save this article

Dynamics Analysis for the Random Homogeneous Biased Assimilation Model

Author

Listed:
  • Jiangbo Zhang

    (School of Science, Southwest Petroleum University, Chengdu 610500, China)

  • Yiyi Zhao

    (School of Business Administration, Faculty of Business Administration, Southwestern University of Finance and Economics, Chengdu 611130, China)

Abstract

This paper studies the evolution of opinions over random social networks subject to individual biases. An agent reviews the opinion of a randomly selected one and then updates its opinion under homogeneous biased assimilation. This study investigates the impact of biased assimilation on random opinion networks, which is different from the previous studies on fixed network structures. If the bias parameters are static, it is proven that the event in which all agents converge to extreme opinions happens almost surely. Next, the opinion polarization event is proved to be a probability one event. While if the bias parameters are dynamic, the opinion evolution is proven to depend on early finite time slots for the dynamical individual bias parameter functions independent of the biased parameter values after the time threshold. Numerical simulations further show that opinion evolution depends on early finite time slots for some nonlinear dynamical individual bias parameter functions.

Suggested Citation

  • Jiangbo Zhang & Yiyi Zhao, 2023. "Dynamics Analysis for the Random Homogeneous Biased Assimilation Model," Mathematics, MDPI, vol. 11(7), pages 1-17, March.
  • Handle: RePEc:gam:jmathe:v:11:y:2023:i:7:p:1661-:d:1111826
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/11/7/1661/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/11/7/1661/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Isaac Waller & Ashton Anderson, 2021. "Quantifying social organization and political polarization in online platforms," Nature, Nature, vol. 600(7888), pages 264-268, December.
    2. Rainer Hegselmann & Ulrich Krause, 2002. "Opinion Dynamics and Bounded Confidence Models, Analysis and Simulation," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 5(3), pages 1-2.
    3. Daron Acemoğlu & Giacomo Como & Fabio Fagnani & Asuman Ozdaglar, 2013. "Opinion Fluctuations and Disagreement in Social Networks," Mathematics of Operations Research, INFORMS, vol. 38(1), pages 1-27, February.
    4. Guodong Shi & Alexandre Proutiere & Mikael Johansson & John S. Baras & Karl H. Johansson, 2016. "The Evolution of Beliefs over Signed Social Networks," Operations Research, INFORMS, vol. 64(3), pages 585-604, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wu, Yujia & Guo, Peng, 2024. "Effects of relative homophily and relative heterophily on opinion dynamics in coevolving networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 644(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Michel Grabisch & Antoine Mandel & Agnieszka Rusinowska, 2023. "On the Design of Public Debate in Social Networks," Operations Research, INFORMS, vol. 71(2), pages 626-648, March.
    2. Hai-Bo Hu & Cang-Hai Li & Qing-Ying Miao, 2017. "Opinion Diffusion On Multilayer Social Networks," Advances in Complex Systems (ACS), World Scientific Publishing Co. Pte. Ltd., vol. 20(06n07), pages 1-25, September.
    3. Hu, Haibo & Chen, Wenhao & Hu, Yixuan, 2024. "Opinion dynamics in social networks under the influence of mass media," Applied Mathematics and Computation, Elsevier, vol. 482(C).
    4. Michel Grabisch & Antoine Mandel & Agnieszka Rusinowska, 2022. "On the design of public debate in social networks," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) hal-03770884, HAL.
    5. Michel Grabisch & Antoine Mandel & Agnieszka Rusinowska, 2022. "On the design of public debate in social networks," Post-Print hal-03770884, HAL.
    6. Michel Grabisch & Antoine Mandel & Agnieszka Rusinowska, 2022. "On the design of public debate in social networks," PSE-Ecole d'économie de Paris (Postprint) hal-03770884, HAL.
    7. Rusinowska, Agnieszka & Taalaibekova, Akylai, 2019. "Opinion formation and targeting when persuaders have extreme and centrist opinions," Journal of Mathematical Economics, Elsevier, vol. 84(C), pages 9-27.
    8. Antonio Parravano & Ascensión Andina-Díaz & Miguel A Meléndez-Jiménez, 2016. "Bounded Confidence under Preferential Flip: A Coupled Dynamics of Structural Balance and Opinions," PLOS ONE, Public Library of Science, vol. 11(10), pages 1-23, October.
    9. Isabel Melguizo, 2019. "Homophily and the Persistence of Disagreement," The Economic Journal, Royal Economic Society, vol. 129(619), pages 1400-1424.
    10. Azzimonti, Marina & Fernandes, Marcos, 2023. "Social media networks, fake news, and polarization," European Journal of Political Economy, Elsevier, vol. 76(C).
    11. Michel Grabisch & Antoine Mandel & Agnieszka Rusinowska & Emily Tanimura, 2015. "Strategic influence in social networks," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) hal-01158168, HAL.
    12. Eger, Steffen, 2016. "Opinion dynamics and wisdom under out-group discrimination," Mathematical Social Sciences, Elsevier, vol. 80(C), pages 97-107.
    13. Shane T. Mueller & Yin-Yin Sarah Tan, 2018. "Cognitive perspectives on opinion dynamics: the role of knowledge in consensus formation, opinion divergence, and group polarization," Journal of Computational Social Science, Springer, vol. 1(1), pages 15-48, January.
    14. Castro, Luis E. & Shaikh, Nazrul I., 2018. "A particle-learning-based approach to estimate the influence matrix of online social networks," Computational Statistics & Data Analysis, Elsevier, vol. 126(C), pages 1-18.
    15. Patrick Mellacher, 2021. "Opinion Dynamics with Conflicting Interests," Papers 2111.09408, arXiv.org.
    16. Matjaž Steinbacher & Mitja Steinbacher, 2019. "Opinion Formation with Imperfect Agents as an Evolutionary Process," Computational Economics, Springer;Society for Computational Economics, vol. 53(2), pages 479-505, February.
    17. Jan Hk{a}z{l}a & Yan Jin & Elchanan Mossel & Govind Ramnarayan, 2019. "A Geometric Model of Opinion Polarization," Papers 1910.05274, arXiv.org, revised Aug 2021.
    18. Shyam Gouri Suresh & Scott Jeffrey, 2017. "The Consequences of Social Pressures on Partisan Opinion Dynamics," Eastern Economic Journal, Palgrave Macmillan;Eastern Economic Association, vol. 43(2), pages 242-259, March.
    19. Fabio Bagagiolo & Dario Bauso & Raffaele Pesenti, 2016. "Mean-Field Game Modeling the Bandwagon Effect with Activation Costs," Dynamic Games and Applications, Springer, vol. 6(4), pages 456-476, December.
    20. Low, Nicholas Kah Yean & Melatos, Andrew, 2022. "Discerning media bias within a network of political allies and opponents: The idealized example of a biased coin," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 590(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:11:y:2023:i:7:p:1661-:d:1111826. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.