Photovoltaic Power Prediction Based on VMD-BRNN-TSP
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Lu Ye & Saadya Fahad Jabbar & Musaddak M. Abdul Zahra & Mou Leong Tan & Zaher Mundher Yaseen, 2021. "Bayesian Regularized Neural Network Model Development for Predicting Daily Rainfall from Sea Level Pressure Data: Investigation on Solving Complex Hydrology Problem," Complexity, Hindawi, vol. 2021, pages 1-14, April.
- Lin, Yu & Lu, Qin & Tan, Bin & Yu, Yuanyuan, 2022. "Forecasting energy prices using a novel hybrid model with variational mode decomposition," Energy, Elsevier, vol. 246(C).
- Mohamed Mohana & Abdelaziz Salah Saidi & Salem Alelyani & Mohammed J. Alshayeb & Suhail Basha & Ali Eisa Anqi, 2021. "Small-Scale Solar Photovoltaic Power Prediction for Residential Load in Saudi Arabia Using Machine Learning," Energies, MDPI, vol. 14(20), pages 1-18, October.
- Huang, Xiaoqiao & Li, Qiong & Tai, Yonghang & Chen, Zaiqing & Liu, Jun & Shi, Junsheng & Liu, Wuming, 2022. "Time series forecasting for hourly photovoltaic power using conditional generative adversarial network and Bi-LSTM," Energy, Elsevier, vol. 246(C).
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Yuxiang Guo & Qiang Han & Tan Li & Huichu Fu & Meng Liang & Siwei Zhang, 2025. "Robust Photovoltaic Power Forecasting Model Under Complex Meteorological Conditions," Mathematics, MDPI, vol. 13(11), pages 1-34, May.
- Shengli Wang & Xiaolong Guo & Tianle Sun & Lihui Xu & Jinfeng Zhu & Zhicai Li & Jinjiang Zhang, 2025. "Short-Term Photovoltaic Power Forecasting Based on the VMD-IDBO-DHKELM Model," Energies, MDPI, vol. 18(2), pages 1-17, January.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Adam Krechowicz & Maria Krechowicz & Katarzyna Poczeta, 2022. "Machine Learning Approaches to Predict Electricity Production from Renewable Energy Sources," Energies, MDPI, vol. 15(23), pages 1-41, December.
- Gobu Balraj & Aruldoss Albert Victoire & Jaikumar S. & Amalraj Victoire, 2022. "Variational mode decomposition combined fuzzy—Twin support vector machine model with deep learning for solar photovoltaic power forecasting," PLOS ONE, Public Library of Science, vol. 17(9), pages 1-28, September.
- Alexandru Matei & Stefan-Alexandru Precup & Dragos Circa & Arpad Gellert & Constantin-Bala Zamfirescu, 2023. "Estimating Travel Time for Autonomous Mobile Robots through Long Short-Term Memory," Mathematics, MDPI, vol. 11(7), pages 1-19, April.
- Junhao Wu & Yuan Hu & Daqing Wu & Zhengyong Yang, 2022. "An Aquatic Product Price Forecast Model Using VMD-IBES-LSTM Hybrid Approach," Agriculture, MDPI, vol. 12(8), pages 1-26, August.
- Stajić, Ljubiša & Praksová, Renáta & Brkić, Dejan & Praks, Pavel, 2024. "Estimation of global natural gas spot prices using big data and symbolic regression," Resources Policy, Elsevier, vol. 95(C).
- Xiao, Zenan & Huang, Xiaoqiao & Liu, Jun & Li, Chengli & Tai, Yonghang, 2023. "A novel method based on time series ensemble model for hourly photovoltaic power prediction," Energy, Elsevier, vol. 276(C).
- Sizhe Xie & Yao Li & Peng Wang, 2024. "Optimal Scheduling of Off-Site Industrial Production in the Context of Distributed Photovoltaics," Energies, MDPI, vol. 17(9), pages 1-18, April.
- Qin Lu & Jingwen Liao & Kechi Chen & Yanhui Liang & Yu Lin, 2024. "Predicting Natural Gas Prices Based on a Novel Hybrid Model with Variational Mode Decomposition," Computational Economics, Springer;Society for Computational Economics, vol. 63(2), pages 639-678, February.
- Yu, Hui & Li, Huiru, 2025. "Interactions among correlations: How does the volatility of the carbon-energy price correlations transmit across different time scales?," Energy, Elsevier, vol. 320(C).
- Tian, Zhirui & Wang, Jiyang, 2023. "A wind speed prediction system based on new data preprocessing strategy and improved multi-objective optimizer," Renewable Energy, Elsevier, vol. 215(C).
- Stefenon, Stefano Frizzo & Seman, Laio Oriel & Aquino, Luiza Scapinello & Coelho, Leandro dos Santos, 2023. "Wavelet-Seq2Seq-LSTM with attention for time series forecasting of level of dams in hydroelectric power plants," Energy, Elsevier, vol. 274(C).
- Zang, Haixiang & Chen, Dianhao & Liu, Jingxuan & Cheng, Lilin & Sun, Guoqiang & Wei, Zhinong, 2024. "Improving ultra-short-term photovoltaic power forecasting using a novel sky-image-based framework considering spatial-temporal feature interaction," Energy, Elsevier, vol. 293(C).
- Haider A. Khan & Shahryar Ghorbani & Elham Shabani & Shahab S. Band, 2024. "Enhancement of Neural Networks Model’s Predictions of Currencies Exchange Rates by Phase Space Reconstruction and Harris Hawks’ Optimization," Computational Economics, Springer;Society for Computational Economics, vol. 63(2), pages 835-860, February.
- Liu, Jingxuan & Zang, Haixiang & Zhang, Fengchun & Cheng, Lilin & Ding, Tao & Wei, Zhinong & Sun, Guoqiang, 2023. "A hybrid meteorological data simulation framework based on time-series generative adversarial network for global daily solar radiation estimation," Renewable Energy, Elsevier, vol. 219(P1).
- Wang, Min & Rao, Congjun & Xiao, Xinping & Hu, Zhuo & Goh, Mark, 2024. "Efficient shrinkage temporal convolutional network model for photovoltaic power prediction," Energy, Elsevier, vol. 297(C).
- Xu, Shaozhen & Liu, Jun & Huang, Xiaoqiao & Li, Chengli & Chen, Zaiqing & Tai, Yonghang, 2024. "Minutely multi-step irradiance forecasting based on all-sky images using LSTM-InformerStack hybrid model with dual feature enhancement," Renewable Energy, Elsevier, vol. 224(C).
- Wang, Junjie & Ye, Li & Ding, Xiaoyu & Dang, Yaoguo, 2024. "A novel seasonal grey prediction model with time-lag and interactive effects for forecasting the photovoltaic power generation," Energy, Elsevier, vol. 304(C).
- Bingchun Liu & Mingzhao Lai, 2025. "Advanced Machine Learning for Financial Markets: A PCA-GRU-LSTM Approach," Journal of the Knowledge Economy, Springer;Portland International Center for Management of Engineering and Technology (PICMET), vol. 16(1), pages 3140-3174, March.
- Chen, Zhiqiang & Li, Jianbin & Cheng, Long & Liu, Xiufeng, 2023. "Federated-WDCGAN: A federated smart meter data sharing framework for privacy preservation," Applied Energy, Elsevier, vol. 334(C).
- Jesús Molina‐Muñoz & Andrés Mora‐Valencia & Javier Perote, 2024. "Predicting carbon and oil price returns using hybrid models based on machine and deep learning," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 31(2), June.
More about this item
Keywords
PV power; variational mode decomposition; Bayesian regularization neural network; time-sharing prediction; mutual information;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:11:y:2023:i:4:p:1033-:d:1072620. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.