IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v11y2023i17p3743-d1229778.html
   My bibliography  Save this article

Global Properties of HIV-1 Dynamics Models with CTL Immune Impairment and Latent Cell-to-Cell Spread

Author

Listed:
  • Noura H. AlShamrani

    (Department of Mathematics, Faculty of Science, University of Jeddah, P.O. Box 80327, Jeddah 21589, Saudi Arabia)

  • Reham H. Halawani

    (Department of Mathematics, Faculty of Science, University of Jeddah, P.O. Box 80327, Jeddah 21589, Saudi Arabia)

  • Wafa Shammakh

    (Department of Mathematics, Faculty of Science, University of Jeddah, P.O. Box 80327, Jeddah 21589, Saudi Arabia)

  • Ahmed M. Elaiw

    (Department of Mathematics, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia)

Abstract

This paper presents and analyzes two mathematical models for the human immunodeficiency virus type-1 (HIV-1) infection with Cytotoxic T Lymphocyte cell (CTL) immune impairment. These models describe the interactions between healthy CD 4 + T cells, latently and actively infected cells, HIV-1 particles, and CTLs. The healthy CD 4 + T cells might be infected when they make contact with: (i) HIV-1 particles due to virus-to-cell (VTC) contact; (ii) latently infected cells due to latent cell-to-cell (CTC) contact; and (iii) actively infected cells due to active CTC contact. Distributed time delays are considered in the second model. We show the nonnegativity and boundedness of the solutions of the systems. Further, we derive basic reproduction numbers ℜ 0 and ℜ ˜ 0 , that determine the existence and stability of equilibria of our proposed systems. We establish the global asymptotic stability of all equilibria by using the Lyapunov method together with LaSalle’s invariance principle. We confirm the theoretical results by numerical simulations. The effect of immune impairment, time delay and CTC transmission on the HIV-1 dynamics are discussed. It is found that weak immunity contributes significantly to the development of the disease. Further, we have established that the presence of time delay can significantly decrease the basic reproduction number and then suppress the HIV-1 replication. On the other hand, the presence of latent CTC spread increases the basic reproduction number and then enhances the viral progression. Thus, neglecting the latent CTC spread in the HIV-1 infection model will lead to an underestimation of the basic reproduction number. Consequently, the designed drug therapies will not be accurate or sufficient to eradicate the viruses from the body. These findings may help to improve the understanding of the dynamics of HIV-1 within a host.

Suggested Citation

  • Noura H. AlShamrani & Reham H. Halawani & Wafa Shammakh & Ahmed M. Elaiw, 2023. "Global Properties of HIV-1 Dynamics Models with CTL Immune Impairment and Latent Cell-to-Cell Spread," Mathematics, MDPI, vol. 11(17), pages 1-29, August.
  • Handle: RePEc:gam:jmathe:v:11:y:2023:i:17:p:3743-:d:1229778
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/11/17/3743/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/11/17/3743/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. AlShamrani, N.H., 2021. "Stability of a general adaptive immunity HIV infection model with silent infected cell-to-cell spread," Chaos, Solitons & Fractals, Elsevier, vol. 150(C).
    2. Liu, Huijuan & Zhang, Jia-Fang, 2019. "Dynamics of two time delays differential equation model to HIV latent infection," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 514(C), pages 384-395.
    3. Ahmed M. Elaiw & Afnan D. Al Agha, 2022. "Global Stability of a Reaction–Diffusion Malaria/COVID-19 Coinfection Dynamics Model," Mathematics, MDPI, vol. 10(22), pages 1-31, November.
    4. Hattaf, Khalid & Dutta, Hemen, 2020. "Modeling the dynamics of viral infections in presence of latently infected cells," Chaos, Solitons & Fractals, Elsevier, vol. 136(C).
    5. Alan S. Perelson & Avidan U. Neumann & Martin Markowitz & John M. Leonard & David D. Ho, 1996. "HIV-1 Dynamics In Vivo: Virion Clearance Rate, Infected Cell Lifespan, and Viral Generation Time," Working Papers 96-02-004, Santa Fe Institute.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Miled El Hajji & Rahmah Mohammed Alnjrani, 2023. "Periodic Behaviour of HIV Dynamics with Three Infection Routes," Mathematics, MDPI, vol. 12(1), pages 1-23, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Noura H. AlShamrani & Ahmed Elaiw & Aeshah A. Raezah & Khalid Hattaf, 2023. "Global Dynamics of a Diffusive Within-Host HTLV/HIV Co-Infection Model with Latency," Mathematics, MDPI, vol. 11(6), pages 1-47, March.
    2. Miled El Hajji & Rahmah Mohammed Alnjrani, 2023. "Periodic Behaviour of HIV Dynamics with Three Infection Routes," Mathematics, MDPI, vol. 12(1), pages 1-23, December.
    3. Prakash, M. & Rakkiyappan, R. & Manivannan, A. & Cao, Jinde, 2019. "Dynamical analysis of antigen-driven T-cell infection model with multiple delays," Applied Mathematics and Computation, Elsevier, vol. 354(C), pages 266-281.
    4. Sutimin, & Wijaya, Karunia Putra & Páez Chávez, Joseph & Tian, Tianhai, 2021. "An in-host HIV-1 infection model incorporating quiescent and activated CD4+ T cells as well as CTL response," Applied Mathematics and Computation, Elsevier, vol. 409(C).
    5. Iraj Hosseini & Feilim Mac Gabhann, 2012. "Multi-Scale Modeling of HIV Infection in vitro and APOBEC3G-Based Anti-Retroviral Therapy," PLOS Computational Biology, Public Library of Science, vol. 8(2), pages 1-17, February.
    6. E Fabian Cardozo & Adriana Andrade & John W Mellors & Daniel R Kuritzkes & Alan S Perelson & Ruy M Ribeiro, 2017. "Treatment with integrase inhibitor suggests a new interpretation of HIV RNA decay curves that reveals a subset of cells with slow integration," PLOS Pathogens, Public Library of Science, vol. 13(7), pages 1-18, July.
    7. Konstantin E. Starkov & Anatoly N. Kanatnikov, 2021. "Eradication Conditions of Infected Cell Populations in the 7-Order HIV Model with Viral Mutations and Related Results," Mathematics, MDPI, vol. 9(16), pages 1-14, August.
    8. Anand, Monalisa & Danumjaya, P. & Rao, P. Raja Sekhara, 2023. "A nonlinear mathematical model on the Covid-19 transmission pattern among diabetic and non-diabetic population," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 210(C), pages 346-369.
    9. A. M. Elaiw & N. H. AlShamrani & E. Dahy & A. A. Abdellatif & Aeshah A. Raezah, 2023. "Effect of Macrophages and Latent Reservoirs on the Dynamics of HTLV-I and HIV-1 Coinfection," Mathematics, MDPI, vol. 11(3), pages 1-26, January.
    10. Yu Shi & Zizhao Zhang & Weng Kee Wong, 2019. "Particle swarm based algorithms for finding locally and Bayesian D-optimal designs," Journal of Statistical Distributions and Applications, Springer, vol. 6(1), pages 1-17, December.
    11. Wang, Jinliang & Guo, Min & Liu, Xianning & Zhao, Zhitao, 2016. "Threshold dynamics of HIV-1 virus model with cell-to-cell transmission, cell-mediated immune responses and distributed delay," Applied Mathematics and Computation, Elsevier, vol. 291(C), pages 149-161.
    12. Heffernan, J.M. & Keeling, M.J., 2008. "An in-host model of acute infection: Measles as a case study," Theoretical Population Biology, Elsevier, vol. 73(1), pages 134-147.
    13. Singh, Harendra, 2021. "Analysis of drug treatment of the fractional HIV infection model of CD4+ T-cells," Chaos, Solitons & Fractals, Elsevier, vol. 146(C).
    14. Xu, Jinhu & Geng, Yan & Zhou, Yicang, 2017. "Global dynamics for an age-structured HIV virus infection model with cellular infection and antiretroviral therapy," Applied Mathematics and Computation, Elsevier, vol. 305(C), pages 62-83.
    15. Xinggui Li & Xinsong Yang, 2023. "Global Stabilization of Delayed Feedback Financial System Involved in Advertisement under Impulsive Disturbance," Mathematics, MDPI, vol. 11(9), pages 1-12, April.
    16. Jianwei Chen, 2010. "Modelling long‐term human immunodeficiency virus dynamic models with application to acquired immune deficiency syndrome clinical study," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 59(5), pages 805-820, November.
    17. Musharif Ahmed & Muhammad Aamer Saleem & Muhammad Zubair & Ijaz Mansoor Qureshi & Saad Zafar, 2022. "Stability analysis and memetic computation using differential evolution for in-host HIV model," Indian Journal of Pure and Applied Mathematics, Springer, vol. 53(1), pages 76-91, March.
    18. Dubey, Preeti & Dubey, Uma S. & Dubey, Balram, 2018. "Modeling the role of acquired immune response and antiretroviral therapy in the dynamics of HIV infection," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 144(C), pages 120-137.
    19. Yang, Junyuan & Wang, Xiaoyan, 2019. "Dynamics and asymptotical profiles of an age-structured viral infection model with spatial diffusion," Applied Mathematics and Computation, Elsevier, vol. 360(C), pages 236-254.
    20. Mukhtar, Roshana & Chang, Chuan-Yu & Raja, Muhammad Asif Zahoor & Chaudhary, Naveed Ishtiaq & Shu, Chi-Min, 2024. "Novel nonlinear fractional order Parkinson's disease model for brain electrical activity rhythms: Intelligent adaptive Bayesian networks," Chaos, Solitons & Fractals, Elsevier, vol. 180(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:11:y:2023:i:17:p:3743-:d:1229778. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.