IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v10y2022i22p4390-d979632.html
   My bibliography  Save this article

Global Stability of a Reaction–Diffusion Malaria/COVID-19 Coinfection Dynamics Model

Author

Listed:
  • Ahmed M. Elaiw

    (Department of Mathematics, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia)

  • Afnan D. Al Agha

    (Department of Mathematical Science, College of Engineering, University of Business and Technology, Jeddah 21361, Saudi Arabia)

Abstract

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a new virus which infects the respiratory system and causes the coronavirus disease 2019 (COVID-19). The coinfection between malaria and COVID-19 has been registered in many countries. This has risen an urgent need to understand the dynamics of coinfection. In this paper, we construct a reaction–diffusion in-host malaria/COVID-19 model. The model includes seven-dimensional partial differential equations that explore the interactions between seven compartments, healthy red blood cells (RBCs), infected RBCs, free merozoites, healthy epithelial cells (ECs), infected ECs, free SARS-CoV-2 particles, and antibodies. The biological validation of the model is confirmed by establishing the nonnegativity and boundedness of the model’s solutions. All equilibrium points with the corresponding existence conditions are calculated. The global stability of all equilibria is proved by picking up appropriate Lyapunov functionals. Numerical simulations are used to enhance and visualize the theoretical results. We found that the equilibrium points show the different cases when malaria and SARS-CoV-2 infections occur as mono-infection or coinfection. The shared antibody immune response decreases the concentrations of SARS-CoV-2 and malaria merozoites. This can have an important role in reducing the severity of SARS-CoV-2 if the immune response works effectively.

Suggested Citation

  • Ahmed M. Elaiw & Afnan D. Al Agha, 2022. "Global Stability of a Reaction–Diffusion Malaria/COVID-19 Coinfection Dynamics Model," Mathematics, MDPI, vol. 10(22), pages 1-31, November.
  • Handle: RePEc:gam:jmathe:v:10:y:2022:i:22:p:4390-:d:979632
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/10/22/4390/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/10/22/4390/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ahmed Elaiw & Afnan Al Agha, 2020. "Global Analysis of a Reaction-Diffusion Within-Host Malaria Infection Model with Adaptive Immune Response," Mathematics, MDPI, vol. 8(4), pages 1-32, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ahmed M. Elaiw & Aeshah A. Raezah & Matuka A. Alshaikh, 2023. "Global Dynamics of Viral Infection with Two Distinct Populations of Antibodies," Mathematics, MDPI, vol. 11(14), pages 1-26, July.
    2. Bing Li & Ziye Xiang, 2023. "Evolutionary Game of Vaccination Considering Both Epidemic and Economic Factors by Infectious Network of Complex Nodes," Mathematics, MDPI, vol. 11(12), pages 1-26, June.
    3. Noura H. AlShamrani & Reham H. Halawani & Wafa Shammakh & Ahmed M. Elaiw, 2023. "Global Properties of HIV-1 Dynamics Models with CTL Immune Impairment and Latent Cell-to-Cell Spread," Mathematics, MDPI, vol. 11(17), pages 1-29, August.
    4. Ali Algarni & Afnan D. Al Agha & Aisha Fayomi & Hakim Al Garalleh, 2023. "Kinetics of a Reaction-Diffusion Mtb/SARS-CoV-2 Coinfection Model with Immunity," Mathematics, MDPI, vol. 11(7), pages 1-25, April.
    5. Ahmed. M. Elaiw & Abdullah J. Alsaedi & Aatef. D. Hobiny & Shaban. A. Aly, 2022. "Global Properties of a Diffusive SARS-CoV-2 Infection Model with Antibody and Cytotoxic T-Lymphocyte Immune Responses," Mathematics, MDPI, vol. 11(1), pages 1-32, December.
    6. Ahmed M. Elaiw & Abdulsalam S. Shflot & Aatef D. Hobiny & Shaban A. Aly, 2023. "Global Dynamics of an HTLV-I and SARS-CoV-2 Co-Infection Model with Diffusion," Mathematics, MDPI, vol. 11(3), pages 1-33, January.
    7. Noura H. AlShamrani & Ahmed Elaiw & Aeshah A. Raezah & Khalid Hattaf, 2023. "Global Dynamics of a Diffusive Within-Host HTLV/HIV Co-Infection Model with Latency," Mathematics, MDPI, vol. 11(6), pages 1-47, March.
    8. Xinggui Li & Xinsong Yang, 2023. "Global Stabilization of Delayed Feedback Financial System Involved in Advertisement under Impulsive Disturbance," Mathematics, MDPI, vol. 11(9), pages 1-12, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.

      Corrections

      All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:10:y:2022:i:22:p:4390-:d:979632. See general information about how to correct material in RePEc.

      If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

      If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

      If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

      For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

      Please note that corrections may take a couple of weeks to filter through the various RePEc services.

      IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.