IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v354y2019icp266-281.html
   My bibliography  Save this article

Dynamical analysis of antigen-driven T-cell infection model with multiple delays

Author

Listed:
  • Prakash, M.
  • Rakkiyappan, R.
  • Manivannan, A.
  • Cao, Jinde

Abstract

This paper is mainly concerned with an investigation of antigen-driven T-cell infection process through a mathematical model. Several mathematical models have been introduced in the literature in order to gain insights into the dynamics of the disease progression, however, the results considering the effect of multiple factors which include antigen-driven CD4 T-cell progress, latent infection stage, activation of CTLs response, role of antiretroviral therapies (ARTs) and possibilities of multiple time-delays during the infection process are not involved. Hence, the paper introduces a six-dimensional virus infection model by involving the above factors. Particularly, (i) the effect of activation of antigen-specific T-cells; (ii) the effect of the maturation of infected cells; (iii) effect of multiple time delays, that is, during the interaction between susceptible and infectious and during the activation of immune responses; which play a significant role in preventing and modulating the Human Immunodeficiency Virus (HIV). The main aim of the paper to analyze the local and global stability of the class of mathematical models regarding the effect of time delays which provides a better pathway to the infection progress. Finally, the overall contribution of the present work is listed as follows: (1) by constructing the suitable Lyapunov functional, the global stability of the intracellular delayed model is derived; (2) detailed Hopf-bifurcation analysis is discussed with respect to immune response delay. The numerical simulation is performed to validate the effectiveness and applicability of the theoretical predictions.

Suggested Citation

  • Prakash, M. & Rakkiyappan, R. & Manivannan, A. & Cao, Jinde, 2019. "Dynamical analysis of antigen-driven T-cell infection model with multiple delays," Applied Mathematics and Computation, Elsevier, vol. 354(C), pages 266-281.
  • Handle: RePEc:eee:apmaco:v:354:y:2019:i:c:p:266-281
    DOI: 10.1016/j.amc.2019.02.050
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300319301547
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2019.02.050?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Cao, Jinde & Guerrini, Luca & Cheng, Zunshui, 2019. "Stability and Hopf bifurcation of controlled complex networks model with two delays," Applied Mathematics and Computation, Elsevier, vol. 343(C), pages 21-29.
    2. Feng, Tao & Qiu, Zhipeng & Meng, Xinzhu & Rong, Libin, 2019. "Analysis of a stochastic HIV-1 infection model with degenerate diffusion," Applied Mathematics and Computation, Elsevier, vol. 348(C), pages 437-455.
    3. Zhang, Dian & Cheng, Jun & Cao, Jinde & Zhang, Dan, 2019. "Finite-time synchronization control for semi-Markov jump neural networks with mode-dependent stochastic parametric uncertainties," Applied Mathematics and Computation, Elsevier, vol. 344, pages 230-242.
    4. Liu, Huijuan & Zhang, Jia-Fang, 2019. "Dynamics of two time delays differential equation model to HIV latent infection," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 514(C), pages 384-395.
    5. Pinto, Carla M.A. & Carvalho, Ana R.M., 2017. "The role of synaptic transmission in a HIV model with memory," Applied Mathematics and Computation, Elsevier, vol. 292(C), pages 76-95.
    6. Wei, Zhouchao & Zhu, Bin & Yang, Jing & Perc, Matjaž & Slavinec, Mitja, 2019. "Bifurcation analysis of two disc dynamos with viscous friction and multiple time delays," Applied Mathematics and Computation, Elsevier, vol. 347(C), pages 265-281.
    7. P. Balasubramaniam & M. Prakash & Fathalla A. Rihan & S. Lakshmanan, 2014. "Hopf Bifurcation and Stability of Periodic Solutions for Delay Differential Model of HIV Infection of CD4 + T-cells," Abstract and Applied Analysis, Hindawi, vol. 2014, pages 1-18, August.
    8. Wang, Yan & Jiang, Daqing & Hayat, Tasawar & Ahmad, Bashir, 2017. "A stochastic HIV infection model with T-cell proliferation and CTL immune response," Applied Mathematics and Computation, Elsevier, vol. 315(C), pages 477-493.
    9. Jiang, Daqing & Liu, Qun & Shi, Ningzhong & Hayat, Tasawar & Alsaedi, Ahmed & Xia, Peiyan, 2017. "Dynamics of a stochastic HIV-1 infection model with logistic growth," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 469(C), pages 706-717.
    10. Alan S. Perelson & Avidan U. Neumann & Martin Markowitz & John M. Leonard & David D. Ho, 1996. "HIV-1 Dynamics In Vivo: Virion Clearance Rate, Infected Cell Lifespan, and Viral Generation Time," Working Papers 96-02-004, Santa Fe Institute.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ahmed M. Elaiw & Abdulsalam S. Shflot & Aatef D. Hobiny & Shaban A. Aly, 2023. "Global Dynamics of an HTLV-I and SARS-CoV-2 Co-Infection Model with Diffusion," Mathematics, MDPI, vol. 11(3), pages 1-33, January.
    2. Ahmed M. Elaiw & Abdulsalam S. Shflot & Aatef D. Hobiny, 2022. "Global Stability of Delayed SARS-CoV-2 and HTLV-I Coinfection Models within a Host," Mathematics, MDPI, vol. 10(24), pages 1-35, December.
    3. Miaadi, Foued & Li, Xiaodi, 2021. "Impulsive effect on fixed-time control for distributed delay uncertain static neural networks with leakage delay," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
    4. Elaiw, Ahmed M. & Alshaikh, Matuka A., 2020. "Global stability of discrete pathogen infection model with humoral immunity and cell-to-cell transmission," Chaos, Solitons & Fractals, Elsevier, vol. 130(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Arshad, Sadia & Defterli, Ozlem & Baleanu, Dumitru, 2020. "A second order accurate approximation for fractional derivatives with singular and non-singular kernel applied to a HIV model," Applied Mathematics and Computation, Elsevier, vol. 374(C).
    2. Zhang, Tongqian & Xu, Xinna & Wang, Xinzeng, 2023. "Dynamic analysis of a cytokine-enhanced viral infection model with time delays and CTL immune response," Chaos, Solitons & Fractals, Elsevier, vol. 170(C).
    3. Qi, Haokun & Meng, Xinzhu, 2021. "Mathematical modeling, analysis and numerical simulation of HIV: The influence of stochastic environmental fluctuations on dynamics," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 187(C), pages 700-719.
    4. Cheng, Yan & Li, Mingtao & Zhang, Fumin, 2019. "A dynamics stochastic model with HIV infection of CD4+ T-cells driven by Lévy noise," Chaos, Solitons & Fractals, Elsevier, vol. 129(C), pages 62-70.
    5. A. M. Elaiw & N. H. AlShamrani & E. Dahy & A. A. Abdellatif & Aeshah A. Raezah, 2023. "Effect of Macrophages and Latent Reservoirs on the Dynamics of HTLV-I and HIV-1 Coinfection," Mathematics, MDPI, vol. 11(3), pages 1-26, January.
    6. Rajasekar, S.P. & Pitchaimani, M. & Zhu, Quanxin, 2020. "Progressive dynamics of a stochastic epidemic model with logistic growth and saturated treatment," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 538(C).
    7. Wang, Yan & Jiang, Daqing & Alsaedi, Ahmed & Hayat, Tasawar, 2018. "Modelling a stochastic HIV model with logistic target cell growth and nonlinear immune response function," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 501(C), pages 276-292.
    8. Lu, Minmin & Wang, Yan & Jiang, Daqing, 2021. "Stationary distribution and probability density function analysis of a stochastic HIV model with cell-to-cell infection," Applied Mathematics and Computation, Elsevier, vol. 410(C).
    9. Noura H. AlShamrani & Reham H. Halawani & Wafa Shammakh & Ahmed M. Elaiw, 2023. "Global Properties of HIV-1 Dynamics Models with CTL Immune Impairment and Latent Cell-to-Cell Spread," Mathematics, MDPI, vol. 11(17), pages 1-29, August.
    10. Qesmi, Redouane & Hammoumi, Aayah, 2020. "A stochastic delay model of HIV pathogenesis with reactivation of latent reservoirs," Chaos, Solitons & Fractals, Elsevier, vol. 132(C).
    11. Wang, Yan & Qi, Kai & Jiang, Daqing, 2021. "An HIV latent infection model with cell-to-cell transmission and stochastic perturbation," Chaos, Solitons & Fractals, Elsevier, vol. 151(C).
    12. Shi, Ruiqing & Lu, Ting & Wang, Cuihong, 2021. "Dynamic analysis of a fractional-order model for HIV with drug-resistance and CTL immune response," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 188(C), pages 509-536.
    13. Pratap, A. & Raja, R. & Cao, J. & Lim, C.P. & Bagdasar, O., 2019. "Stability and pinning synchronization analysis of fractional order delayed Cohen–Grossberg neural networks with discontinuous activations," Applied Mathematics and Computation, Elsevier, vol. 359(C), pages 241-260.
    14. Sutimin, & Wijaya, Karunia Putra & Páez Chávez, Joseph & Tian, Tianhai, 2021. "An in-host HIV-1 infection model incorporating quiescent and activated CD4+ T cells as well as CTL response," Applied Mathematics and Computation, Elsevier, vol. 409(C).
    15. Yan, Zhilian & Guo, Tong & Zhao, Anqi & Kong, Qingkai & Zhou, Jianping, 2022. "Reliable exponential H∞ filtering for a class of switched reaction-diffusion neural networks," Applied Mathematics and Computation, Elsevier, vol. 414(C).
    16. Zhang, Xiao-Li & Li, Hong-Li & Kao, Yonggui & Zhang, Long & Jiang, Haijun, 2022. "Global Mittag-Leffler synchronization of discrete-time fractional-order neural networks with time delays," Applied Mathematics and Computation, Elsevier, vol. 433(C).
    17. Qi, Kai & Jiang, Daqing & Hayat, Tasawar & Alsaedi, Ahmed, 2021. "Virus dynamic behavior of a stochastic HIV/AIDS infection model including two kinds of target cell infections and CTL immune responses," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 188(C), pages 548-570.
    18. Iraj Hosseini & Feilim Mac Gabhann, 2012. "Multi-Scale Modeling of HIV Infection in vitro and APOBEC3G-Based Anti-Retroviral Therapy," PLOS Computational Biology, Public Library of Science, vol. 8(2), pages 1-17, February.
    19. Veronika Novotná & Vladěna Štěpánková, 2015. "Parameter Estimation for Dynamic Model of the Financial System," Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis, Mendel University Press, vol. 63(6), pages 2051-2055.
    20. E Fabian Cardozo & Adriana Andrade & John W Mellors & Daniel R Kuritzkes & Alan S Perelson & Ruy M Ribeiro, 2017. "Treatment with integrase inhibitor suggests a new interpretation of HIV RNA decay curves that reveals a subset of cells with slow integration," PLOS Pathogens, Public Library of Science, vol. 13(7), pages 1-18, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:354:y:2019:i:c:p:266-281. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.