IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v10y2022i8p1264-d791378.html
   My bibliography  Save this article

Evaluation Method of Highway Plant Slope Based on Rough Set Theory and Analytic Hierarchy Process: A Case Study in Taihang Mountain, Hebei, China

Author

Listed:
  • Luliang Liu

    (School of Civil and Transportation Engineering, Hebei University of Technology, Tianjin 300401, China)

  • Yuanming Dou

    (School of Civil and Transportation Engineering, Hebei University of Technology, Tianjin 300401, China)

  • Jiangang Qiao

    (School of Civil and Transportation Engineering, Hebei University of Technology, Tianjin 300401, China)

Abstract

The material foundation of soil and water conservation is built on the integrity of the highway plant slope. The proportional relevance of the components that affect slope quality was evaluated based on an environmental assessment and the actual characteristics of the highway slope. A system of four major indexes and twelve secondary indexes comprising plant traits, geometric factors, hydrological conditions, and vegetation conditions was developed to assess the stability of roadway plant slopes. The rough set theory approach and the analytic hierarchy process were used to solve the weights of the slope evaluation indexes. Based on a rough set and an analytic hierarchy process, an evaluation model is proposed. The model eliminates the inconsistency and uncertainty in the evaluated factors that are used to calculate the slope. The study was conducted in China. The highway plant slope of the Taihang Mountain highway in the Hebei province was evaluated using the assessment model after dividing the highway plant slope stability into four grades. According to the evaluation results, the model can be used as a reference highway plant slope stability study and provide technical help to prevent and lower slope safety accidents. The evaluation model can predict the slope quality of highway plants, demonstrating the efficacy and reliability of the evaluation methodology and approach.

Suggested Citation

  • Luliang Liu & Yuanming Dou & Jiangang Qiao, 2022. "Evaluation Method of Highway Plant Slope Based on Rough Set Theory and Analytic Hierarchy Process: A Case Study in Taihang Mountain, Hebei, China," Mathematics, MDPI, vol. 10(8), pages 1-17, April.
  • Handle: RePEc:gam:jmathe:v:10:y:2022:i:8:p:1264-:d:791378
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/10/8/1264/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/10/8/1264/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Saaty, Thomas L., 1990. "How to make a decision: The analytic hierarchy process," European Journal of Operational Research, Elsevier, vol. 48(1), pages 9-26, September.
    2. Rodríguez, Rosa M. & Labella, Álvaro & Nuñez-Cacho, Pedro & Molina-Moreno, Valentin & Martínez, Luis, 2022. "A comprehensive minimum cost consensus model for large scale group decision making for circular economy measurement," Technological Forecasting and Social Change, Elsevier, vol. 175(C).
    3. G. Sakkas & I. Misailidis & N. Sakellariou & V. Kouskouna & G. Kaviris, 2016. "Modeling landslide susceptibility in Greece: a weighted linear combination approach using analytic hierarchical process, validated with spatial and statistical analysis," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 84(3), pages 1873-1904, December.
    4. Shoubao Geng & Peili Shi & Ning Zong & Wanrui Zhu, 2018. "Using Soil Survey Database to Assess Soil Quality in the Heterogeneous Taihang Mountains, North China," Sustainability, MDPI, vol. 10(10), pages 1-18, September.
    5. Xiaochun Luo & Zilong Wang & Lin Lu & Yan Guan, 2020. "Supply Chain Flexibility Evaluation Based on Matter-Element Extension," Complexity, Hindawi, vol. 2020, pages 1-12, May.
    6. Jun Cheng & Qiaoning Yang & Lin Lu & Tingsong Wang, 2021. "Study on Performance Evaluation of Service Supply Chain by Extension Method," Discrete Dynamics in Nature and Society, Hindawi, vol. 2021, pages 1-11, October.
    7. Wanquan Liu & Xinggang Yan & Shoudong Huang & Chunyu Yang & Guoliang Wang, 2018. "Advanced Control for Singular Systems with Applications," Mathematical Problems in Engineering, Hindawi, vol. 2018, pages 1-2, June.
    8. Chuanshuang Hu & Yongmei Ma & Ting Chen & Huihua Chen, 2021. "Application on Online Process Learning Evaluation Based on Optimal Discrete Hopfield Neural Network and Entropy Weight TOPSIS Method," Complexity, Hindawi, vol. 2021, pages 1-9, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Weicheng Han & Zele Mo & Wei Wang & Yicheng Zhou, 2025. "Research on Vegetation Removal Strategies for the Ming Guangwu Great Wall Based on Clearance Resistance Assessment," Land, MDPI, vol. 14(6), pages 1-21, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Maria Karpouza & Konstantinos Chousianitis & George D. Bathrellos & Hariklia D. Skilodimou & George Kaviris & Assimina Antonarakou, 2021. "Hazard zonation mapping of earthquake-induced secondary effects using spatial multi-criteria analysis," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 109(1), pages 637-669, October.
    2. Pablo Piñones & Ivan Derpich & Ricardo Venegas, 2023. "Circular Economy 4.0 Evaluation Model for Urban Road Infrastructure Projects, CIROAD," Sustainability, MDPI, vol. 15(4), pages 1-32, February.
    3. Flavio Martins & Maria Fatima Almeida & Rodrigo Calili & Agatha Oliveira, 2020. "Design Thinking Applied to Smart Home Projects: A User-Centric and Sustainable Perspective," Sustainability, MDPI, vol. 12(23), pages 1-27, December.
    4. Pathiraja, Erandathie & Griffith, Garry & Farquharson, Robert & Faggia, Rob, 2019. "The Cost of Climate Change to Agricultural Industries: Coconuts in Sri Lanka," International Journal on Food System Dynamics, International Center for Management, Communication, and Research, vol. 10(05), December.
    5. V. Srinivasan & G. Shainesh & Anand K. Sharma, 2015. "An approach to prioritize customer-based, cost-effective service enhancements," The Service Industries Journal, Taylor & Francis Journals, vol. 35(14), pages 747-762, October.
    6. Patricija Bajec & Danijela Tuljak-Suban, 2019. "An Integrated Analytic Hierarchy Process—Slack Based Measure-Data Envelopment Analysis Model for Evaluating the Efficiency of Logistics Service Providers Considering Undesirable Performance Criteria," Sustainability, MDPI, vol. 11(8), pages 1-18, April.
    7. Xinxin Liu & Xiaosheng Wang & Haiying Guo & Xiaojie An, 2021. "Benefit Allocation in Shared Water-Saving Management Contract Projects Based on Modified Expected Shapley Value," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(1), pages 39-62, January.
    8. Sushil, 2019. "Efficient interpretive ranking process incorporating implicit and transitive dominance relationships," Annals of Operations Research, Springer, vol. 283(1), pages 1489-1516, December.
    9. Moumita Palchaudhuri & Sujata Biswas, 2016. "Application of AHP with GIS in drought risk assessment for Puruliya district, India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 84(3), pages 1905-1920, December.
    10. Tommaso Ortalli & Andrea Di Martino & Michela Longo & Dario Zaninelli, 2024. "Make-or-Buy Policy Decision in Maintenance Planning for Mobility: A Multi-Criteria Approach," Logistics, MDPI, vol. 8(2), pages 1-18, May.
    11. D. K. Choudhury, 2019. "Standard Critical Path and Selection of Most Economic and Quality Contractors for Construction of Thermal Power Plant: A Case Study in NTPC," Metamorphosis: A Journal of Management Research, , vol. 18(2), pages 103-118, December.
    12. Choudhary, Devendra & Shankar, Ravi, 2012. "An STEEP-fuzzy AHP-TOPSIS framework for evaluation and selection of thermal power plant location: A case study from India," Energy, Elsevier, vol. 42(1), pages 510-521.
    13. Madjid Tavana & Mariya Sodenkamp & Leena Suhl, 2010. "A soft multi-criteria decision analysis model with application to the European Union enlargement," Annals of Operations Research, Springer, vol. 181(1), pages 393-421, December.
    14. Levary, Reuven R. & Wan, Ke, 1999. "An analytic hierarchy process based simulation model for entry mode decision regarding foreign direct investment," Omega, Elsevier, vol. 27(6), pages 661-677, December.
    15. Lilian. O. Iheukwumere-Esotu & Akilu Yunusa-Kaltungo, 2021. "Knowledge Criticality Assessment and Codification Framework for Major Maintenance Activities: A Case Study of Cement Rotary Kiln Plant," Sustainability, MDPI, vol. 13(9), pages 1-21, April.
    16. Alpana Agarwal & Divina Raghav, 2023. "Analysing Determinants of Employee Performance Based on Reverse Mentoring and Employer Branding Using Analytic Hierarchical Process," Management and Labour Studies, XLRI Jamshedpur, School of Business Management & Human Resources, vol. 48(3), pages 343-358, August.
    17. María Pilar de la Cruz López & Juan José Cartelle Barros & Alfredo del Caño Gochi & Manuel Lara Coira, 2021. "New Approach for Managing Sustainability in Projects," Sustainability, MDPI, vol. 13(13), pages 1-27, June.
    18. Sadiq Ullah & Mudassar Iqbal & Muhammad Waseem & Adnan Abbas & Muhammad Masood & Ghulam Nabi & Muhammad Atiq Ur Rehman Tariq & Muhammad Sadam, 2024. "Potential Sites for Rainwater Harvesting Focusing on the Sustainable Development Goals Using Remote Sensing and Geographical Information System," Sustainability, MDPI, vol. 16(21), pages 1-23, October.
    19. Sward, Jeffrey A. & Nilson, Roberta S. & Katkar, Venktesh V. & Stedman, Richard C. & Kay, David L. & Ifft, Jennifer E. & Zhang, K. Max, 2021. "Integrating social considerations in multicriteria decision analysis for utility-scale solar photovoltaic siting," Applied Energy, Elsevier, vol. 288(C).
    20. Mou, W.M. & Wong, W.-K. & McAleer, M.J., 2018. "Financial Credit Risk and Core Enterprise Supply Chains," Econometric Institute Research Papers EI2018-27, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:10:y:2022:i:8:p:1264-:d:791378. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.