IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v10y2022i13p2203-d846800.html
   My bibliography  Save this article

Landslide Displacement Prediction Based on Time-Frequency Analysis and LMD-BiLSTM Model

Author

Listed:
  • Zian Lin

    (School of Computer Science and Information Security, Guilin University of Electronic Technology, Guilin 541004, China
    Guangxi Key Laboratory of Precision Navigation Technology and Application, Guilin University of Electronic Technology, Guilin 541004, China)

  • Yuanfa Ji

    (Guangxi Key Laboratory of Precision Navigation Technology and Application, Guilin University of Electronic Technology, Guilin 541004, China
    Information and Communication School, Guilin University of Electronic Technology, Guilin 541004, China)

  • Weibin Liang

    (Guangxi Key Laboratory of Precision Navigation Technology and Application, Guilin University of Electronic Technology, Guilin 541004, China
    Information and Communication School, Guilin University of Electronic Technology, Guilin 541004, China)

  • Xiyan Sun

    (Guangxi Key Laboratory of Precision Navigation Technology and Application, Guilin University of Electronic Technology, Guilin 541004, China
    Information and Communication School, Guilin University of Electronic Technology, Guilin 541004, China)

Abstract

In landslide displacement prediction, random factors that would affect the performance of prediction are usually ignored by using a time series analysis method. In order to solve this problem, in this paper, a landslide displacement prediction model, the local mean decomposition-bidirectional long short-term memory (LMD-BiLSTM), is proposed based on the time-frequency analysis method. The model uses the local mean decomposition (LMD) algorithm to decompose landslide displacement and obtains several subsequences of landslide displacement with different frequencies. This paper analyzes the internal relationship between the landslide displacement and rainfall, reservoir water level, and landslide state. The maximum information coefficient (MIC) algorithm is used to calculate the intrinsic correlation between each subsequence of landslide displacement and rainfall, reservoir water level, and landslide state. Subsequences of influential factors with high correlation are selected as input variables of the bidirectional long short-term memory (BiLSTM) model to predict each subsequence. Finally, the predicted results of each of the subsequences are added to obtain the final predicted displacement. The proposed LMD-BiLSTM model effectiveness is verified based on the Baishuihe landslide. The prediction results and evaluation indexes show that the model can accurately predict landslide displacement.

Suggested Citation

  • Zian Lin & Yuanfa Ji & Weibin Liang & Xiyan Sun, 2022. "Landslide Displacement Prediction Based on Time-Frequency Analysis and LMD-BiLSTM Model," Mathematics, MDPI, vol. 10(13), pages 1-19, June.
  • Handle: RePEc:gam:jmathe:v:10:y:2022:i:13:p:2203-:d:846800
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/10/13/2203/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/10/13/2203/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yin, Juan & Deng, Zhen & Ines, Amor V.M. & Wu, Junbin & Rasu, Eeswaran, 2020. "Forecast of short-term daily reference evapotranspiration under limited meteorological variables using a hybrid bi-directional long short-term memory model (Bi-LSTM)," Agricultural Water Management, Elsevier, vol. 242(C).
    2. Ngoc-Lan Huynh, Anh & Deo, Ravinesh C. & Ali, Mumtaz & Abdulla, Shahab & Raj, Nawin, 2021. "Novel short-term solar radiation hybrid model: Long short-term memory network integrated with robust local mean decomposition," Applied Energy, Elsevier, vol. 298(C).
    3. Xiuzhen Li & Jiming Kong & Zhenyu Wang, 2012. "Landslide displacement prediction based on combining method with optimal weight," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 61(2), pages 635-646, March.
    4. Li, Shaohong & Wu, Na, 2021. "A new grey prediction model and its application in landslide displacement prediction," Chaos, Solitons & Fractals, Elsevier, vol. 147(C).
    5. Yong-gang Zhang & Jun Tang & Zheng-ying He & Junkun Tan & Chao Li, 2021. "A novel displacement prediction method using gated recurrent unit model with time series analysis in the Erdaohe landslide," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 105(1), pages 783-813, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zian Lin & Yuanfa Ji & Xiyan Sun, 2023. "Landslide Displacement Prediction Based on CEEMDAN Method and CNN–BiLSTM Model," Sustainability, MDPI, vol. 15(13), pages 1-20, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xinchang Liu & Bolong Liu, 2023. "A Hybrid Time Series Model for Predicting the Displacement of High Slope in the Loess Plateau Region," Sustainability, MDPI, vol. 15(6), pages 1-26, March.
    2. Zian Lin & Xiyan Sun & Yuanfa Ji, 2022. "Landslide Displacement Prediction Based on Time Series Analysis and Double-BiLSTM Model," IJERPH, MDPI, vol. 19(4), pages 1-23, February.
    3. Zian Lin & Yuanfa Ji & Xiyan Sun, 2023. "Landslide Displacement Prediction Based on CEEMDAN Method and CNN–BiLSTM Model," Sustainability, MDPI, vol. 15(13), pages 1-20, June.
    4. Weidong Wang & Jiaying Li & Xia Qu & Zheng Han & Pan Liu, 2019. "Prediction on landslide displacement using a new combination model: a case study of Qinglong landslide in China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 96(3), pages 1121-1139, April.
    5. Wu, Han & Liang, Yan & Heng, Jiani, 2023. "Pulse-diagnosis-inspired multi-feature extraction deep network for short-term electricity load forecasting," Applied Energy, Elsevier, vol. 339(C).
    6. Xiaoyang Yu & Cheng Lian & Yixin Su & Bingrong Xu & Xiaoping Wang & Wei Yao & Huiming Tang, 2022. "Selective ensemble deep bidirectional RVFLN for landslide displacement prediction," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 112(1), pages 725-745, May.
    7. Duan, Jikai & Zuo, Hongchao & Bai, Yulong & Chang, Mingheng & Chen, Xiangyue & Wang, Wenpeng & Ma, Lei & Chen, Bolong, 2023. "A multistep short-term solar radiation forecasting model using fully convolutional neural networks and chaotic aquila optimization combining WRF-Solar model results," Energy, Elsevier, vol. 271(C).
    8. Liulei Bao & Guangcheng Zhang & Xinli Hu & Shuangshuang Wu & Xiangdong Liu, 2021. "Stage Division of Landslide Deformation and Prediction of Critical Sliding Based on Inverse Logistic Function," Energies, MDPI, vol. 14(4), pages 1-24, February.
    9. Akbal, Yıldırım & Ünlü, Kamil Demirberk, 2022. "A univariate time series methodology based on sequence-to-sequence learning for short to midterm wind power production," Renewable Energy, Elsevier, vol. 200(C), pages 832-844.
    10. Bellido-Jiménez, Juan A. & Estévez, Javier & García-Marín, Amanda P., 2022. "A regional machine learning method to outperform temperature-based reference evapotranspiration estimations in Southern Spain," Agricultural Water Management, Elsevier, vol. 274(C).
    11. Hong Wang & Guangyu Long & Jianxing Liao & Yan Xu & Yan Lv, 2022. "A new hybrid method for establishing point forecasting, interval forecasting, and probabilistic forecasting of landslide displacement," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 111(2), pages 1479-1505, March.
    12. Fugang LI & Guangwen MA & Shijun CHEN & Weibin HUANG, 2021. "An Ensemble Modeling Approach to Forecast Daily Reservoir Inflow Using Bidirectional Long- and Short-Term Memory (Bi-LSTM), Variational Mode Decomposition (VMD), and Energy Entropy Method," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(9), pages 2941-2963, July.
    13. Song, Zhe & Cao, Sunliang & Yang, Hongxing, 2023. "Assessment of solar radiation resource and photovoltaic power potential across China based on optimized interpretable machine learning model and GIS-based approaches," Applied Energy, Elsevier, vol. 339(C).
    14. Shih-Lun Fang & Yi-Shan Lin & Sheng-Chih Chang & Yi-Lung Chang & Bing-Yun Tsai & Bo-Jein Kuo, 2024. "Using Artificial Intelligence Algorithms to Estimate and Short-Term Forecast the Daily Reference Evapotranspiration with Limited Meteorological Variables," Agriculture, MDPI, vol. 14(4), pages 1-20, March.
    15. Ghimire, Sujan & Deo, Ravinesh C. & Casillas-Pérez, David & Salcedo-Sanz, Sancho, 2022. "Boosting solar radiation predictions with global climate models, observational predictors and hybrid deep-machine learning algorithms," Applied Energy, Elsevier, vol. 316(C).
    16. Elizabeth Michael, Neethu & Hasan, Shazia & Al-Durra, Ahmed & Mishra, Manohar, 2022. "Short-term solar irradiance forecasting based on a novel Bayesian optimized deep Long Short-Term Memory neural network," Applied Energy, Elsevier, vol. 324(C).
    17. Li, Shaohong & Wu, Na, 2021. "A new grey prediction model and its application in landslide displacement prediction," Chaos, Solitons & Fractals, Elsevier, vol. 147(C).
    18. Mehdi Jamei & Mumtaz Ali & Anurag Malik & Ramendra Prasad & Shahab Abdulla & Zaher Mundher Yaseen, 2022. "Forecasting Daily Flood Water Level Using Hybrid Advanced Machine Learning Based Time-Varying Filtered Empirical Mode Decomposition Approach," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(12), pages 4637-4676, September.
    19. Pamir & Nadeem Javaid & Saher Javaid & Muhammad Asif & Muhammad Umar Javed & Adamu Sani Yahaya & Sheraz Aslam, 2022. "Synthetic Theft Attacks and Long Short Term Memory-Based Preprocessing for Electricity Theft Detection Using Gated Recurrent Unit," Energies, MDPI, vol. 15(8), pages 1-20, April.
    20. Maha Shabbir & Sohail Chand & Farhat Iqbal, 2022. "A Novel Hybrid Method for River Discharge Prediction," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(1), pages 253-272, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:10:y:2022:i:13:p:2203-:d:846800. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.