IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v10y2022i13p2177-d845116.html
   My bibliography  Save this article

Lyapunov-Based Controller Using Nonlinear Observer for Planar Motors

Author

Listed:
  • Khac Huan Su

    (Department of Electrical Engineering, Chonnam National University, Gwangju 61186, Korea)

  • Jaeyun Yim

    (Department of Energy System Engineering, Chung-Ang University, Seoul 06974, Korea)

  • Wonhee Kim

    (School of Energy System Engineering, Chung-Ang University, Seoul 06974, Korea)

  • Youngwoo Lee

    (Department of Electrical Engineering, Chonnam National University, Gwangju 61186, Korea)

Abstract

In general, it is not easy work to design controllers and observers for high-order nonlinear systems. Planar motors that are applied to semiconductor wafer-stage processes have 14th-order nonlinear dynamics and require high resolution for position tracking. Thus, many sensors are required to achieve enhanced tracking performance because there are many state variables. To handle these problems, we developed a Lyapunov-based controller to improve the position tracking performance. Consequently, a nonlinear observer (NOB) was also developed to estimate all of the state variables including the position, the velocity, and the phase current using only position feedback. The closed-loop stability is proved through Lyapunov theory and the input-to-state stability (ISS) property. The proposed method was evaluated based on the simulation results and compared with the conventional proportional–integral–derivative (PID) control method to show the improvement in the position tracking performance.

Suggested Citation

  • Khac Huan Su & Jaeyun Yim & Wonhee Kim & Youngwoo Lee, 2022. "Lyapunov-Based Controller Using Nonlinear Observer for Planar Motors," Mathematics, MDPI, vol. 10(13), pages 1-18, June.
  • Handle: RePEc:gam:jmathe:v:10:y:2022:i:13:p:2177-:d:845116
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/10/13/2177/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/10/13/2177/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zhenhua Cui & Jiyong Dai & Jianrui Sun & Dezhi Li & Licheng Wang & Kai Wang & A. M. Bastos Pereira, 2022. "Hybrid Methods Using Neural Network and Kalman Filter for the State of Charge Estimation of Lithium-Ion Battery," Mathematical Problems in Engineering, Hindawi, vol. 2022, pages 1-11, May.
    2. Yu Hua & Na Wang & Keyou Zhao, 2021. "Simultaneous Unknown Input and State Estimation for the Linear System with a Rank-Deficient Distribution Matrix," Mathematical Problems in Engineering, Hindawi, vol. 2021, pages 1-11, January.
    3. Li, Dezhi & Li, Shuo & Zhang, Shubo & Sun, Jianrui & Wang, Licheng & Wang, Kai, 2022. "Aging state prediction for supercapacitors based on heuristic kalman filter optimization extreme learning machine," Energy, Elsevier, vol. 250(C).
    4. Wonhee Kim & Donghoon Shin & Youngwoo Lee, 2020. "Nonlinear Position Control Using Only Position Feedback under Position Errors and Yaw Constraints for Air Bearing Planar Motors," Mathematics, MDPI, vol. 8(8), pages 1-18, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cui, Zhenhua & Kang, Le & Li, Liwei & Wang, Licheng & Wang, Kai, 2022. "A combined state-of-charge estimation method for lithium-ion battery using an improved BGRU network and UKF," Energy, Elsevier, vol. 259(C).
    2. Dezhi Li & Dongfang Yang & Liwei Li & Licheng Wang & Kai Wang, 2022. "Electrochemical Impedance Spectroscopy Based on the State of Health Estimation for Lithium-Ion Batteries," Energies, MDPI, vol. 15(18), pages 1-26, September.
    3. Cui, Zhenhua & Kang, Le & Li, Liwei & Wang, Licheng & Wang, Kai, 2022. "A hybrid neural network model with improved input for state of charge estimation of lithium-ion battery at low temperatures," Renewable Energy, Elsevier, vol. 198(C), pages 1328-1340.
    4. Ming Zhang & Yanshuo Liu & Dezhi Li & Xiaoli Cui & Licheng Wang & Liwei Li & Kai Wang, 2023. "Electrochemical Impedance Spectroscopy: A New Chapter in the Fast and Accurate Estimation of the State of Health for Lithium-Ion Batteries," Energies, MDPI, vol. 16(4), pages 1-16, February.
    5. Bingxiang Sun & Xianjie Qi & Donglin Song & Haijun Ruan, 2023. "Review of Low-Temperature Performance, Modeling and Heating for Lithium-Ion Batteries," Energies, MDPI, vol. 16(20), pages 1-37, October.
    6. Shengyang Lu & Yu Zhu & Lihu Dong & Guangyu Na & Yan Hao & Guanfeng Zhang & Wuyang Zhang & Shanshan Cheng & Junyou Yang & Yuqiu Sui, 2022. "Small-Signal Stability Research of Grid-Connected Virtual Synchronous Generators," Energies, MDPI, vol. 15(19), pages 1-17, September.
    7. Li, Dezhi & Li, Shuo & Zhang, Shubo & Sun, Jianrui & Wang, Licheng & Wang, Kai, 2022. "Aging state prediction for supercapacitors based on heuristic kalman filter optimization extreme learning machine," Energy, Elsevier, vol. 250(C).
    8. Aleksander Suti & Gianpietro Di Rito & Giuseppe Mattei, 2022. "Development and Experimental Validation of Novel Thevenin-Based Hysteretic Models for Li-Po Battery Packs Employed in Fixed-Wing UAVs," Energies, MDPI, vol. 15(23), pages 1-26, December.
    9. Ping Ma & Shuhui Cui & Mingshuai Chen & Shengzhe Zhou & Kai Wang, 2023. "Review of Family-Level Short-Term Load Forecasting and Its Application in Household Energy Management System," Energies, MDPI, vol. 16(15), pages 1-17, August.
    10. Mahendiran T. Vellingiri & Ibrahim M. Mehedi & Thangam Palaniswamy, 2022. "A Novel Deep Learning-Based State-of-Charge Estimation for Renewable Energy Management System in Hybrid Electric Vehicles," Mathematics, MDPI, vol. 10(2), pages 1-15, January.
    11. Xinwei Sun & Yang Zhang & Yongcheng Zhang & Licheng Wang & Kai Wang, 2023. "Summary of Health-State Estimation of Lithium-Ion Batteries Based on Electrochemical Impedance Spectroscopy," Energies, MDPI, vol. 16(15), pages 1-19, July.
    12. Youcef Himri & Shafiqur Rehman & Ali Mostafaeipour & Saliha Himri & Adel Mellit & Mustapha Merzouk & Nachida Kasbadji Merzouk, 2022. "Overview of the Role of Energy Resources in Algeria’s Energy Transition," Energies, MDPI, vol. 15(13), pages 1-26, June.
    13. Juan D. Velásquez & Lorena Cadavid & Carlos J. Franco, 2023. "Intelligence Techniques in Sustainable Energy: Analysis of a Decade of Advances," Energies, MDPI, vol. 16(19), pages 1-45, October.
    14. Liu, Chunli & Li, Qiang & Wang, Kai, 2021. "State-of-charge estimation and remaining useful life prediction of supercapacitors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    15. Ning Ma & Huaixian Yin & Kai Wang, 2023. "Prediction of the Remaining Useful Life of Supercapacitors at Different Temperatures Based on Improved Long Short-Term Memory," Energies, MDPI, vol. 16(14), pages 1-14, July.
    16. Julan Chen & Guangheng Qi & Kai Wang, 2023. "Synergizing Machine Learning and the Aviation Sector in Lithium-Ion Battery Applications: A Review," Energies, MDPI, vol. 16(17), pages 1-22, August.
    17. Athanasios Ioannis Arvanitidis & Dimitrios Bargiotas & Aspassia Daskalopulu & Dimitrios Kontogiannis & Ioannis P. Panapakidis & Lefteri H. Tsoukalas, 2022. "Clustering Informed MLP Models for Fast and Accurate Short-Term Load Forecasting," Energies, MDPI, vol. 15(4), pages 1-14, February.
    18. Shigui Dong & Na Wang & Xueyan Wang & Zihao Lu, 2023. "Extended Recursive Three-Step Filter for Linear Discrete-Time Systems with Dual-Unknown Inputs," Energies, MDPI, vol. 16(15), pages 1-18, July.
    19. Wang, Zhengxin & Peng, Xinggan & Xia, Ao & Shah, Akeel A. & Yan, Huchao & Huang, Yun & Zhu, Xianqing & Zhu, Xun & Liao, Qiang, 2023. "Comparison of machine learning methods for predicting the methane production from anaerobic digestion of lignocellulosic biomass," Energy, Elsevier, vol. 263(PD).
    20. Mohamed Hassan & Manwinder Singh & Khalid Hamid & Rashid Saeed & Maha Abdelhaq & Raed Alsaqour, 2022. "Modeling of NOMA-MIMO-Based Power Domain for 5G Network under Selective Rayleigh Fading Channels," Energies, MDPI, vol. 15(15), pages 1-19, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:10:y:2022:i:13:p:2177-:d:845116. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.