IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i13p4731-d850437.html
   My bibliography  Save this article

Overview of the Role of Energy Resources in Algeria’s Energy Transition

Author

Listed:
  • Youcef Himri

    (Faculté des Sciences Exactes, Université Tahri Mohamed Béchar, Bechar 08000, Algeria)

  • Shafiqur Rehman

    (Interdisciplinary Research Center for Renewable Energy and Power Systems (IRC-REPS), King Fahd University of Petroleum and Minerals, Box 767, Dhahran 31261, Saudi Arabia)

  • Ali Mostafaeipour

    (Industrial Engineering Department, Yazd University, Yazd 89158-18411, Iran)

  • Saliha Himri

    (Faculté des Sciences Exactes, Université Tahri Mohamed Béchar, Bechar 08000, Algeria)

  • Adel Mellit

    (Renewable Energy Laboratory, University of Jijel, Jijel 18000, Algeria)

  • Mustapha Merzouk

    (FUNDamental and Apply Physics Laboratory (FUNDAPL), Université Saad Dahlab, Blida 09000, Algeria)

  • Nachida Kasbadji Merzouk

    (Unité de Développement des Equipements Solaires (UDES), Centre de Développement des Energies Renouvelables (CDER), Tipaza 42004, Algeria)

Abstract

Algeria is a wealthy country with natural resources, namely, nuclear, renewable, and non-renewable sources. The non-renewable energy sources are considered the lion’s share for energy production (98%). Algeria’s efforts to ensure and strengthen its energy security will take an important step in the coming decades by commissioning new energy infrastructure based on intensive use of water, coal, nuclear, non-renewable, and renewable sources. The implementation of new power infrastructure is expected to be operational from 2030. The renewable power realization in Algeria is relatively less compared to other African countries, i.e., Morocco, Egypt, South Africa, etc. The total renewable power installed capacity in Algeria reached 686 MW in 2020, as part of its national energy portfolio, although the Algerian government has spent tremendous efforts on introducing new sustainable technologies to enable the transition towards a cleaner and sustainable energy system. Indeed, the country announced its plan to install around 22 GW of renewable energy capacity by 2030. It will include 1 GW bio-power from the waste, 13.5 GW from solar PV, 2 GW from CSP, 15 MW from geothermal, 400 MW cogeneration, and, finally, 5 GW from wind. The scope of the present research provides general information about the usage of energy resources such as fossil, nuclear, and renewable sources in Algeria and also covers the energy supply outlook. The present effort is the first of its kind which discusses the application of the coal and nuclear as clean energy sources as part of renewable energy transition. Additionally, it also includes the description of the existing Algerian energy sector and information about water and water desalination and their usage in other sectors.

Suggested Citation

  • Youcef Himri & Shafiqur Rehman & Ali Mostafaeipour & Saliha Himri & Adel Mellit & Mustapha Merzouk & Nachida Kasbadji Merzouk, 2022. "Overview of the Role of Energy Resources in Algeria’s Energy Transition," Energies, MDPI, vol. 15(13), pages 1-26, June.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:13:p:4731-:d:850437
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/13/4731/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/13/4731/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Nadjib Drouiche & Noreddine Ghaffour & Mohamed Naceur & Hacene Mahmoudi & Tarik Ouslimane, 2011. "Reasons for the Fast Growing Seawater Desalination Capacity in Algeria," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(11), pages 2743-2754, September.
    2. M. Mujahid Rafique & Shafiqur Rehman & Md. Mahbub Alam & Luai M. Alhems, 2018. "Feasibility of a 100 MW Installed Capacity Wind Farm for Different Climatic Conditions," Energies, MDPI, vol. 11(8), pages 1-18, August.
    3. Merzouk, N.Kasbadji, 2000. "Wind energy potential of Algeria," Renewable Energy, Elsevier, vol. 21(3), pages 553-562.
    4. Li, Dezhi & Li, Shuo & Zhang, Shubo & Sun, Jianrui & Wang, Licheng & Wang, Kai, 2022. "Aging state prediction for supercapacitors based on heuristic kalman filter optimization extreme learning machine," Energy, Elsevier, vol. 250(C).
    5. Shafiqur Rehman & Abdul Baseer Mohammed & Luai Alhems, 2020. "A Heuristic Approach to Siting and Design Optimization of an Onshore Wind Farm Layout," Energies, MDPI, vol. 13(22), pages 1-18, November.
    6. Shafiqur Rehman & Muhammad M. Rafique & Luai M. Alhems & Md. Mahbub Alam, 2020. "Development and Implementation of Solar Assisted Desiccant Cooling Technology in Developing Countries: A Case of Saudi Arabia," Energies, MDPI, vol. 13(3), pages 1-22, January.
    7. Himri, Y. & Himri, S. & Boudghene Stambouli, A., 2009. "Assessing the wind energy potential projects in Algeria," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(8), pages 2187-2191, October.
    8. Himri, Y. & Rehman, S. & Draoui, B. & Himri, S., 2008. "Wind power potential assessment for three locations in Algeria," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(9), pages 2495-2504, December.
    9. Khan, Meer A.M. & Rehman, S. & Al-Sulaiman, Fahad A., 2018. "A hybrid renewable energy system as a potential energy source for water desalination using reverse osmosis: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 97(C), pages 456-477.
    10. Haytham El-houari & Amine Allouhi & Shafiqur Rehman & Mahmut Sami Buker & Tarik Kousksou & Abdelmajid Jamil & Bouchta El Amrani, 2019. "Design, Simulation, and Economic Optimization of an Off-Grid Photovoltaic System for Rural Electrification," Energies, MDPI, vol. 12(24), pages 1-16, December.
    11. Himri, Y. & Malik, Arif S. & Boudghene Stambouli, A. & Himri, S. & Draoui, B., 2009. "Review and use of the Algerian renewable energy for sustainable development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(6-7), pages 1584-1591, August.
    12. Hanlei Sun & Jianrui Sun & Kun Zhao & Licheng Wang & Kai Wang & Mohammad Yaghoub Abdollahzadeh Jamalabadi, 2022. "Data-Driven ICA-Bi-LSTM-Combined Lithium Battery SOH Estimation," Mathematical Problems in Engineering, Hindawi, vol. 2022, pages 1-8, March.
    13. Mohammed Bouznit & María del P. Pablo-Romero & Antonio Sánchez-Braza, 2020. "Measures to Promote Renewable Energy for Electricity Generation in Algeria," Sustainability, MDPI, vol. 12(4), pages 1-17, February.
    14. Younes Zahraoui & Mohammed Reyasudin Basir Khan & Ibrahim AlHamrouni & Saad Mekhilef & Mahrous Ahmed, 2021. "Current Status, Scenario, and Prospective of Renewable Energy in Algeria: A Review," Energies, MDPI, vol. 14(9), pages 1-28, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Adel Ben Youssef & Mounir Dahmani & Mohamed Wael Ben Khaled, 2024. "Pathways for Low-Carbon Energy Transition in the MENA Region: A Neo-Institutional Perspective," GREDEG Working Papers 2024-22, Groupe de REcherche en Droit, Economie, Gestion (GREDEG CNRS), Université Côte d'Azur, France.
    2. Sagar Shelare & Ravinder Kumar & Trupti Gajbhiye & Sumit Kanchan, 2023. "Role of Geothermal Energy in Sustainable Water Desalination—A Review on Current Status, Parameters, and Challenges," Energies, MDPI, vol. 16(6), pages 1-22, March.
    3. Zahia Tigrine & Hanene Aburideh & Djamila Zioui & Sarra Hout & Naima Sahraoui & Yasmine Benchoubane & Amina Izem & Djilali Tassalit & Fatma Zohra Yahiaoui & Mohamed Khateb & Nadjib Drouiche & Seif El , 2023. "Feasibility Study of a Reverse Osmosis Desalination Unit Powered by Photovoltaic Panels for a Sustainable Water Supply in Algeria," Sustainability, MDPI, vol. 15(19), pages 1-23, September.
    4. Enas Taha Sayed & Abdul Ghani Olabi & Abdul Hai Alami & Ali Radwan & Ayman Mdallal & Ahmed Rezk & Mohammad Ali Abdelkareem, 2023. "Renewable Energy and Energy Storage Systems," Energies, MDPI, vol. 16(3), pages 1-26, February.
    5. Su, Xiang & Tan, Junlan, 2023. "Regional energy transition path and the role of government support and resource endowment in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 174(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Diaf, S. & Notton, G., 2013. "Technical and economic analysis of large-scale wind energy conversion systems in Algeria," Renewable and Sustainable Energy Reviews, Elsevier, vol. 19(C), pages 37-51.
    2. Amarouche, Khalid & Akpınar, Adem & Bachari, Nour El Islam & Houma, Fouzia, 2020. "Wave energy resource assessment along the Algerian coast based on 39-year wave hindcast," Renewable Energy, Elsevier, vol. 153(C), pages 840-860.
    3. Stambouli, A. Boudghene & Khiat, Z. & Flazi, S. & Kitamura, Y., 2012. "A review on the renewable energy development in Algeria: Current perspective, energy scenario and sustainability issues," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 4445-4460.
    4. saheb Koussa, Djohra & Koussa, Mustapha, 2016. "GHGs (greenhouse gases) emission and economic analysis of a GCRES (grid-connected renewable energy system) in the arid region, Algeria," Energy, Elsevier, vol. 102(C), pages 216-230.
    5. Cui, Zhenhua & Kang, Le & Li, Liwei & Wang, Licheng & Wang, Kai, 2022. "A combined state-of-charge estimation method for lithium-ion battery using an improved BGRU network and UKF," Energy, Elsevier, vol. 259(C).
    6. Younes Zahraoui & Mohammed Reyasudin Basir Khan & Ibrahim AlHamrouni & Saad Mekhilef & Mahrous Ahmed, 2021. "Current Status, Scenario, and Prospective of Renewable Energy in Algeria: A Review," Energies, MDPI, vol. 14(9), pages 1-28, April.
    7. Abdeslame, Djamila & Kasbadji Merzouk, Nachida & Mekhtoub, Said & Abbas, Mohamed & Dehmas, Mokrane, 2017. "Estimation of power generation capacities of a wind farms installed in windy sites in Algerian high plateaus," Renewable Energy, Elsevier, vol. 103(C), pages 630-640.
    8. Cui, Zhenhua & Kang, Le & Li, Liwei & Wang, Licheng & Wang, Kai, 2022. "A hybrid neural network model with improved input for state of charge estimation of lithium-ion battery at low temperatures," Renewable Energy, Elsevier, vol. 198(C), pages 1328-1340.
    9. Lepore, Antonio & Palumbo, Biagio & Pievatolo, Antonio, 2020. "A Bayesian approach for site-specific wind rose prediction," Renewable Energy, Elsevier, vol. 150(C), pages 691-702.
    10. Chellali, Farouk & Khellaf, Adballah & Belouchrani, Adel & Recioui, Abdelmadjid, 2011. "A contribution in the actualization of wind map of Algeria," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(2), pages 993-1002, February.
    11. Dezhi Li & Dongfang Yang & Liwei Li & Licheng Wang & Kai Wang, 2022. "Electrochemical Impedance Spectroscopy Based on the State of Health Estimation for Lithium-Ion Batteries," Energies, MDPI, vol. 15(18), pages 1-26, September.
    12. Zahia Tigrine & Hanene Aburideh & Djamila Zioui & Sarra Hout & Naima Sahraoui & Yasmine Benchoubane & Amina Izem & Djilali Tassalit & Fatma Zohra Yahiaoui & Mohamed Khateb & Nadjib Drouiche & Seif El , 2023. "Feasibility Study of a Reverse Osmosis Desalination Unit Powered by Photovoltaic Panels for a Sustainable Water Supply in Algeria," Sustainability, MDPI, vol. 15(19), pages 1-23, September.
    13. Akpınar, Adem, 2013. "Evaluation of wind energy potentiality at coastal locations along the north eastern coasts of Turkey," Energy, Elsevier, vol. 50(C), pages 395-405.
    14. Amina Tahri & Mohsine Bouya & Mokhtar Ghazouani & Ouafae Achak & Tarik Chafik & Khalid El Azdi & Sanae Boughanbour, 2022. "Impact of Solar Energy Integration on the Rheological and Chemical Properties of Bitumen," Energies, MDPI, vol. 16(1), pages 1-28, December.
    15. Hendra Hendra & Dhimas Satria & Hernadewita Hernadewita & Yozerizal Yozerizal & Frengki Hardian & Ahmed M. Galal, 2023. "Performance of Generator Translation and Rotation on Stroke Length Drive of the Two-Rod Mechanism in Renewable Energy Power Plant," Sustainability, MDPI, vol. 15(7), pages 1-14, March.
    16. Kolin Loveless & Aamir Farooq & Noreddine Ghaffour, 2013. "Collection of Condensate Water: Global Potential and Water Quality Impacts," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(5), pages 1351-1361, March.
    17. Benseddik, A. & Azzi, A. & Chellali, F. & Khanniche, R. & Allaf, k., 2018. "An analysis of meteorological parameters influencing solar drying systems in Algeria using the isopleth chart technique," Renewable Energy, Elsevier, vol. 122(C), pages 173-183.
    18. Mohammed Bouznit & María del P. Pablo-Romero & Antonio Sánchez-Braza, 2020. "Measures to Promote Renewable Energy for Electricity Generation in Algeria," Sustainability, MDPI, vol. 12(4), pages 1-17, February.
    19. Ren, Guorui & Wan, Jie & Liu, Jinfu & Yu, Daren, 2019. "Characterization of wind resource in China from a new perspective," Energy, Elsevier, vol. 167(C), pages 994-1010.
    20. Dai, Houde & Wang, Jiaxin & Huang, Yiyang & Lai, Yuan & Zhu, Liqi, 2024. "Lightweight state-of-health estimation of lithium-ion batteries based on statistical feature optimization," Renewable Energy, Elsevier, vol. 222(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:13:p:4731-:d:850437. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.