IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i7p5663-d1105740.html
   My bibliography  Save this article

Performance of Generator Translation and Rotation on Stroke Length Drive of the Two-Rod Mechanism in Renewable Energy Power Plant

Author

Listed:
  • Hendra Hendra

    (Department of Mechanical Engineering, Faculty of Engineering, University of Sultan Ageng Tirtayasa Banten, Cilegon 42435, Indonesia
    Design Manufacture and Material Mechanic Laboratory, COE Petrokimia University of Sultan Ageng Tirtayasa Banten, Cilegon 42435, Indonesia)

  • Dhimas Satria

    (Department of Mechanical Engineering, Faculty of Engineering, University of Sultan Ageng Tirtayasa Banten, Cilegon 42435, Indonesia
    Design Manufacture and Material Mechanic Laboratory, COE Petrokimia University of Sultan Ageng Tirtayasa Banten, Cilegon 42435, Indonesia)

  • Hernadewita Hernadewita

    (Magister of Industrial Engineering, University of Mercu Buana, Jakarta 10650, Indonesia)

  • Yozerizal Yozerizal

    (Mechanical Engineering, New Red White Company, Cikupa 15710, Indonesia)

  • Frengki Hardian

    (Magister of Notary, University of Yarsi, Jakarta 10510, Indonesia)

  • Ahmed M. Galal

    (Department of Mechanical Engineering, College of Engineering in Wadi Al Dawasir, Prince Sattam bin Abdulaziz University, Wadi Al Dawasir 11991, Saudi Arabia
    Production Engineering and Mechanical Design Department, Faculty of Engineering, Mansoura University, El Mansoura 35516, Egypt)

Abstract

Generators are the main components in renewable energy power plants, especially in plants powered by ocean waves. The generator consists of two components of translational and rotational motion. Generators of translational and rotational motion can produce electric power from renewable energy sources such as water, wind, sea waves, biomass, and others. The voltage and electric power are the performance values of the translational and rotational generators which are affected by the type of magnet, the number of coil windings, the distance between the magnet and the coil winding and rotation, the geometry of the drive components, the type of drive, the length of the generator drive stroke, and so on. The types of translational and rotational generator drives can be found in the use of pneumatic motion mechanisms, two-rod motion, crankshaft motion, and others. A common problem in older power plants was that generator components were heavy, easy to break, less rigid, and had low rotation speed. Therefore, to overcome this problem, a generator with a two-rod mechanism is used in this research. In this paper, the generator drive step using a two-rod motion mechanism is used to run the generator. The length of the piston stroke is used to determine the performance of the generator, set at a length of 170–270 mm. The results show that the generator with two-rod motion mechanism rotating at 100–250 rpm can produce 30.9–55 volts at a frequency of 6.9–63.7 Hz with a maximum power of 0.377 w. By setting a piston stroke length of 170 mm, we obtained a rotation of 100–191 rpm and an electrical voltage of 30.9−35 volts. At a piston stroke length of 230 rpm, a rotation of 78–172 rpm is obtained with an electrical voltage of 47.7–55.5 volts. A piston stroke length of 270 mm produces a rotation of 172–256.5 rpm with a mains voltage of 39.9–55.5 volts. Testing the generators of translational and rotational motion using a two-rod motion mechanism in series and parallel with a stroke length of 270 mm produced a rotation from 179.2 to 242.3 rpm and an electric voltage from 57.4 to 79.5 volts and become constant at 35.6 volts by using a parallel mechanism. These results show that the generator translation and rotation motion can produce electric power by using renewable energy resources.

Suggested Citation

  • Hendra Hendra & Dhimas Satria & Hernadewita Hernadewita & Yozerizal Yozerizal & Frengki Hardian & Ahmed M. Galal, 2023. "Performance of Generator Translation and Rotation on Stroke Length Drive of the Two-Rod Mechanism in Renewable Energy Power Plant," Sustainability, MDPI, vol. 15(7), pages 1-14, March.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:7:p:5663-:d:1105740
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/7/5663/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/7/5663/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Mito, Mohamed T. & Ma, Xianghong & Albuflasa, Hanan & Davies, Philip A., 2019. "Reverse osmosis (RO) membrane desalination driven by wind and solar photovoltaic (PV) energy: State of the art and challenges for large-scale implementation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 669-685.
    2. Damian Liszka & Zbigniew Krzemianowski & Tomasz Węgiel & Dariusz Borkowski & Andrzej Polniak & Konrad Wawrzykowski & Artur Cebula, 2022. "Alternative Solutions for Small Hydropower Plants," Energies, MDPI, vol. 15(4), pages 1-31, February.
    3. Pelc, Robin & Fujita, Rod M., 2002. "Renewable energy from the ocean," Marine Policy, Elsevier, vol. 26(6), pages 471-479, November.
    4. Siddik Shakul Hameed & Ramesh Ramadoss & Kannadasan Raju & GM Shafiullah, 2022. "A Framework-Based Wind Forecasting to Assess Wind Potential with Improved Grey Wolf Optimization and Support Vector Regression," Sustainability, MDPI, vol. 14(7), pages 1-29, April.
    5. Omar Farrok & Koushik Ahmed & Abdirazak Dahir Tahlil & Mohamud Mohamed Farah & Mahbubur Rahman Kiran & Md. Rabiul Islam, 2020. "Electrical Power Generation from the Oceanic Wave for Sustainable Advancement in Renewable Energy Technologies," Sustainability, MDPI, vol. 12(6), pages 1-23, March.
    6. Krishnamoorthy R & Udhayakumar K & Kannadasan Raju & Rajvikram Madurai Elavarasan & Lucian Mihet-Popa, 2020. "An Assessment of Onshore and Offshore Wind Energy Potential in India Using Moth Flame Optimization," Energies, MDPI, vol. 13(12), pages 1-41, June.
    7. Khan, Meer A.M. & Rehman, S. & Al-Sulaiman, Fahad A., 2018. "A hybrid renewable energy system as a potential energy source for water desalination using reverse osmosis: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 97(C), pages 456-477.
    8. Tumiran & Lesnanto Multa Putranto & Sarjiya & Fransisco Danang Wijaya & Adi Priyanto & Ira Savitri, 2022. "Generation Expansion Planning Based on Local Renewable Energy Resources: A Case Study of the Isolated Ambon-Seram Power System," Sustainability, MDPI, vol. 14(5), pages 1-21, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Vijayaraja Loganathan & Dhanasekar Ravikumar & Rupa Kesavan & Kanakasri Venkatesan & Raadha Saminathan & Raju Kannadasan & Mahalingam Sudhakaran & Mohammed H. Alsharif & Zong Woo Geem & Junhee Hong, 2022. "A Case Study on Renewable Energy Sources, Power Demand, and Policies in the States of South India—Development of a Thermoelectric Model," Sustainability, MDPI, vol. 14(14), pages 1-29, July.
    2. Tafavogh, Mahyar & Zahedi, Alireza, 2021. "Design and production of a novel encapsulated nano phase change materials to improve thermal efficiency of a quintuple renewable geothermal/hydro/biomass/solar/wind hybrid system," Renewable Energy, Elsevier, vol. 169(C), pages 358-378.
    3. Yao, Ganzhou & Luo, Zirong & Lu, Zhongyue & Wang, Mangkuan & Shang, Jianzhong & Guerrerob, Josep M., 2023. "Unlocking the potential of wave energy conversion: A comprehensive evaluation of advanced maximum power point tracking techniques and hybrid strategies for sustainable energy harvesting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 185(C).
    4. Nadège Bouchonneau & Arnaud Coutrey & Vivianne Marie Bruère & Moacyr Araújo & Alex Costa da Silva, 2023. "Finite Element Modeling and Simulation of a Submerged Wave Energy Converter System for Application to Oceanic Islands in Tropical Atlantic," Energies, MDPI, vol. 16(4), pages 1-17, February.
    5. Shen, Haixue & Zydlewski, Gayle Barbin & Viehman, Haley A. & Staines, Garrett, 2016. "Estimating the probability of fish encountering a marine hydrokinetic device," Renewable Energy, Elsevier, vol. 97(C), pages 746-756.
    6. Qingyuan Wang & Longnv Huang & Jiehui Huang & Qiaoan Liu & Limin Chen & Yin Liang & Peter X. Liu & Chunquan Li, 2022. "A Hybrid Generative Adversarial Network Model for Ultra Short-Term Wind Speed Prediction," Sustainability, MDPI, vol. 14(15), pages 1-16, July.
    7. Licheri, Fabio & Ghisu, Tiziano & Cambuli, Francesco & Puddu, Pierpaolo, 2022. "Detailed investigation of the local flow-field in a Wells turbine coupled to an OWC simulator," Renewable Energy, Elsevier, vol. 197(C), pages 583-593.
    8. Mohanasundaram Anthony & Valsalal Prasad & Kannadasan Raju & Mohammed H. Alsharif & Zong Woo Geem & Junhee Hong, 2020. "Design of Rotor Blades for Vertical Axis Wind Turbine with Wind Flow Modifier for Low Wind Profile Areas," Sustainability, MDPI, vol. 12(19), pages 1-26, September.
    9. Hammar, Linus & Ehnberg, Jimmy & Mavume, Alberto & Cuamba, Boaventura C. & Molander, Sverker, 2012. "Renewable ocean energy in the Western Indian Ocean," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 4938-4950.
    10. Yang, Zhaoqing & Wang, Taiping & Copping, Andrea E., 2013. "Modeling tidal stream energy extraction and its effects on transport processes in a tidal channel and bay system using a three-dimensional coastal ocean model," Renewable Energy, Elsevier, vol. 50(C), pages 605-613.
    11. Zhang, Weiping & Maleki, Akbar, 2022. "Modeling and optimization of a stand-alone desalination plant powered by solar/wind energies based on back-up systems using a hybrid algorithm," Energy, Elsevier, vol. 254(PC).
    12. Zarzuelo, Carmen & López-Ruiz, Alejandro & Ortega-Sánchez, Miguel, 2018. "Impact of human interventions on tidal stream power: The case of Cádiz Bay," Energy, Elsevier, vol. 145(C), pages 88-104.
    13. Jan K. Kazak & Joanna A. Kamińska & Rafał Madej & Marta Bochenkiewicz, 2020. "Where Renewable Energy Sources Funds are Invested? Spatial Analysis of Energy Production Potential and Public Support," Energies, MDPI, vol. 13(21), pages 1-26, October.
    14. Shijun Wang & Chun Liu & Kui Liang & Ziyun Cheng & Xue Kong & Shuang Gao, 2022. "Wind Speed Prediction Model Based on Improved VMD and Sudden Change of Wind Speed," Sustainability, MDPI, vol. 14(14), pages 1-15, July.
    15. Mustapa, M.A. & Yaakob, O.B. & Ahmed, Yasser M. & Rheem, Chang-Kyu & Koh, K.K. & Adnan, Faizul Amri, 2017. "Wave energy device and breakwater integration: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 43-58.
    16. Liu, Hong-wei & Ma, Shun & Li, Wei & Gu, Hai-gang & Lin, Yong-gang & Sun, Xiao-jing, 2011. "A review on the development of tidal current energy in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(2), pages 1141-1146, February.
    17. Sachin Kumar & Kumari Sarita & Akanksha Singh S Vardhan & Rajvikram Madurai Elavarasan & R. K. Saket & Narottam Das, 2020. "Reliability Assessment of Wind-Solar PV Integrated Distribution System Using Electrical Loss Minimization Technique," Energies, MDPI, vol. 13(21), pages 1-30, October.
    18. Américo S. Ribeiro & Maite deCastro & Liliana Rusu & Mariana Bernardino & João M. Dias & Moncho Gomez-Gesteira, 2020. "Evaluating the Future Efficiency of Wave Energy Converters along the NW Coast of the Iberian Peninsula," Energies, MDPI, vol. 13(14), pages 1-15, July.
    19. Liu, Yijin & Li, Ye & He, Fenglan & Wang, Haifeng, 2017. "Comparison study of tidal stream and wave energy technology development between China and some Western Countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 701-716.
    20. Esmaeil Ahmadi & Benjamin McLellan & Behnam Mohammadi-Ivatloo & Tetsuo Tezuka, 2020. "The Role of Renewable Energy Resources in Sustainability of Water Desalination as a Potential Fresh-Water Source: An Updated Review," Sustainability, MDPI, vol. 12(13), pages 1-31, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:7:p:5663-:d:1105740. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.