IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v9y2020i6p174-d364652.html
   My bibliography  Save this article

Soil Mapping Based on the Integration of the Similarity-Based Approach and Random Forests

Author

Listed:
  • Desheng Wang

    (Key Laboratory of Virtual Geographic Environment, Nanjing Normal University, Ministry of Education, Nanjing 210023, China
    State Key Laboratory Cultivation Base of Geographical Environment Evolution, Jiangsu Province, Nanjing 213323, China
    Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing 210023, China)

  • A-Xing Zhu

    (Key Laboratory of Virtual Geographic Environment, Nanjing Normal University, Ministry of Education, Nanjing 210023, China
    State Key Laboratory Cultivation Base of Geographical Environment Evolution, Jiangsu Province, Nanjing 213323, China
    Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing 210023, China
    Department of Geography, University of Wisconsin-Madison, Madison, WI 53706, USA)

Abstract

Digital soil mapping (DSM) is currently the primary framework for predicting the spatial variation of soil information (soil type or soil properties). Random forests and similarity-based methods have been used widely in DSM. However, the accuracy of the similarity-based approach is limited, and the performance of random forests is affected by the quality of the feature set. The objective of this study was to present a method for soil mapping by integrating the similarity-based approach and the random forests method. The Heshan area (Heilongjiang province, China) was selected as the case study for mapping soil subgroups. The results of the regular validation samples showed that the overall accuracy of the integrated method (71.79%) is higher than that of a similarity-based approach (58.97%) and random forests (66.67%). The results of the 5-fold cross-validation showed that the overall accuracy of the integrated method, similarity-based approach, and random forests range from 55% to 72.73%, 43.48% to 69.57%, and 54.17% to 70.83%, with an average accuracy of 66.61%, 57.39%, and 59.62%, respectively. These results suggest that the proposed method can produce a high-quality covariate set and achieve a better performance than either the random forests or similarity-based approach alone.

Suggested Citation

  • Desheng Wang & A-Xing Zhu, 2020. "Soil Mapping Based on the Integration of the Similarity-Based Approach and Random Forests," Land, MDPI, vol. 9(6), pages 1-16, May.
  • Handle: RePEc:gam:jlands:v:9:y:2020:i:6:p:174-:d:364652
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/9/6/174/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/9/6/174/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. United Nations, 2016. "The Sustainable Development Goals 2016," Working Papers id:11456, eSocialSciences.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Claudia Hanson & Sanni Kujala & Peter Waiswa & Tanya Marchant & Joanna Schellenberg, 2017. "Community-based approaches for neonatal survival: Meta-analyses of randomized trial data," WIDER Working Paper Series wp-2017-137, World Institute for Development Economic Research (UNU-WIDER).
    2. Eugenia Ganea & Valentina Bodrug-Lungu, 2018. "Addressing Inequality in Vocational/ Technical Education by Eliminating Gender Bias," Revista romaneasca pentru educatie multidimensionala - Journal for Multidimensional Education, Editura Lumen, Department of Economics, vol. 10(4), pages 136-155, December.
    3. Gallopín, Gilberto, 2018. "Back to the future," Energy Policy, Elsevier, vol. 123(C), pages 318-324.
    4. OGUNNOWO, Fatai Abiodun & Prof. F. A. OKWO & JULIUS, Deborah Nwanne, 2023. "Availability and Utilization of Security Facilities in Federal Tertiary Institutions of Enugu State, Nigeria," International Journal of Research and Innovation in Social Science, International Journal of Research and Innovation in Social Science (IJRISS), vol. 7(5), pages 931-941, May.
    5. Paul L. G. Vlek & Asia Khamzina & Hossein Azadi & Anik Bhaduri & Luna Bharati & Ademola Braimoh & Christopher Martius & Terry Sunderland & Fatemeh Taheri, 2017. "Trade-Offs in Multi-Purpose Land Use under Land Degradation," Sustainability, MDPI, vol. 9(12), pages 1-19, November.
    6. Wirapong Chansanam & Chunqiu Li, 2022. "Scientometrics of Poverty Research for Sustainability Development: Trend Analysis of the 1964–2022 Data through Scopus," Sustainability, MDPI, vol. 14(9), pages 1-19, April.
    7. -, 2021. "The 2020 census round: challenges of the 2030 Agenda for Sustainable Development, the Sustainable Development Goals and the Montevideo Consensus on Population and Development," Población y Desarrollo 46727, Naciones Unidas Comisión Económica para América Latina y el Caribe (CEPAL).
    8. Shannon L. Sibbald & Nicole Haggerty, 2019. "Integrating Business and Medical Pedagogy to Accomplish the Sustainable Development Goals," Journal of Education for Sustainable Development, , vol. 13(1), pages 92-101, March.
    9. Rahi Jain & Prashant Narnaware, 2020. "Application of Systems Thinking to Dent Child Malnutrition: A Palghar District, India Case Study," Millennial Asia, , vol. 11(1), pages 79-98, April.
    10. Asiamah, Ebenezer & Oduro-Yeboah, Charlotte & Mboom, Frank Peget & Atter, Amy & Idun-Acquah, Nancy Nelly & Nkansah, Jessica, 2022. "Assessment of the volume of seafood waste generation, utilization and management system from selected seafood processing companies in Ghana: A case study," African Journal of Food, Agriculture, Nutrition and Development (AJFAND), African Journal of Food, Agriculture, Nutrition and Development (AJFAND), vol. 22(07).
    11. Temidayo Olabode Akenroye & Håvard Mokleiv Nygård & Ama Eyo, 2018. "Towards implementation of sustainable development goals (SDG) in developing nations: A useful funding framework," International Area Studies Review, Center for International Area Studies, Hankuk University of Foreign Studies, vol. 21(1), pages 3-8, March.
    12. Omar B. Da'ar & Abdi A. Gele, 2023. "Tuberculosis in a weak health system, conflict and fragile zone: The monetary value of human lives lost associated with deaths of persons older than 14 years in Somalia," International Journal of Health Planning and Management, Wiley Blackwell, vol. 38(1), pages 53-68, January.
    13. Oier Imaz & Andoni Eizagirre, 2020. "Responsible Innovation for Sustainable Development Goals in Business: An Agenda for Cooperative Firms," Sustainability, MDPI, vol. 12(17), pages 1-20, August.
    14. Mehmet Çağlar & Cem Gürler, 2022. "Sustainable Development Goals: A cluster analysis of worldwide countries," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(6), pages 8593-8624, June.
    15. Mabroor Hassan & Manzoor K Afridi & Muhammad I Khan, 2018. "An overview of alternative and renewable energy governance, barriers, and opportunities in Pakistan," Energy & Environment, , vol. 29(2), pages 184-203, March.
    16. Rahi Jain & Bakul Rao, 2016. "Taxonomy of Challenges in Medical Laboratory Diagnostic Services," Proceedings of International Academic Conferences 3506096, International Institute of Social and Economic Sciences.
    17. Samaneh Sadat Nickayin & Francesca Perrone & Barbara Ermini & Giovanni Quaranta & Rosanna Salvia & Filippo Gambella & Gianluca Egidi, 2021. "Soil Quality and Peri-Urban Expansion of Cities: A Mediterranean Experience (Athens, Greece)," Sustainability, MDPI, vol. 13(4), pages 1-12, February.
    18. Ilaria Zambon & Artemi Cerdà & Filippo Gambella & Gianluca Egidi & Luca Salvati, 2019. "Industrial Sprawl and Residential Housing: Exploring the Interplay between Local Development and Land-Use Change in the Valencian Community, Spain," Land, MDPI, vol. 8(10), pages 1-18, September.
    19. Elizabeth A. R. Fowler & Betty S. Coffey & Heather R. Dixon-Fowler, 2019. "Transforming Good Intentions into Social Impact: A Case on the Creation and Evolution of a Social Enterprise," Journal of Business Ethics, Springer, vol. 159(3), pages 665-678, October.
    20. Ya-Ju Chang & Annekatrin Lehmann & Matthias Finkbeiner, 2017. "Screening Indicators for the Sustainable Child Development Index (SCDI)," Sustainability, MDPI, vol. 9(4), pages 1-19, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:9:y:2020:i:6:p:174-:d:364652. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.