IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v9y2019i1p1-d299261.html
   My bibliography  Save this article

Spatiotemporal Degradation of Abandoned Farmland and Associated Eco-Environmental Risks in the High Mountains of the Nepalese Himalayas

Author

Listed:
  • Suresh Chaudhary

    (Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu 610041, China
    University of Chinese Academy of Sciences (UCAS), Beijing 100049, China
    Wanzhou Key Regional Ecology and Environment Monitoring Station of Three Gorges Project Ecological Environmental Monitoring System, Wanzhou 404020, China
    National Society for Earthquake Technology-Nepal, Kathmandu Lalitpur Po. Box 13667, Nepal)

  • Yukuan Wang

    (Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu 610041, China
    Wanzhou Key Regional Ecology and Environment Monitoring Station of Three Gorges Project Ecological Environmental Monitoring System, Wanzhou 404020, China)

  • Amod Mani Dixit

    (National Society for Earthquake Technology-Nepal, Kathmandu Lalitpur Po. Box 13667, Nepal)

  • Narendra Raj Khanal

    (Central Department of Geography, Tribhuvan University, University Campus, Kirtipur Po. Box 44613, Nepal)

  • Pei Xu

    (Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu 610041, China
    Wanzhou Key Regional Ecology and Environment Monitoring Station of Three Gorges Project Ecological Environmental Monitoring System, Wanzhou 404020, China)

  • Bin Fu

    (Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu 610041, China
    Wanzhou Key Regional Ecology and Environment Monitoring Station of Three Gorges Project Ecological Environmental Monitoring System, Wanzhou 404020, China)

  • Kun Yan

    (Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu 610041, China
    Wanzhou Key Regional Ecology and Environment Monitoring Station of Three Gorges Project Ecological Environmental Monitoring System, Wanzhou 404020, China)

  • Qin Liu

    (Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu 610041, China
    Wanzhou Key Regional Ecology and Environment Monitoring Station of Three Gorges Project Ecological Environmental Monitoring System, Wanzhou 404020, China)

  • Yafeng Lu

    (Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu 610041, China
    Wanzhou Key Regional Ecology and Environment Monitoring Station of Three Gorges Project Ecological Environmental Monitoring System, Wanzhou 404020, China)

  • Ming Li

    (Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu 610041, China
    Wanzhou Key Regional Ecology and Environment Monitoring Station of Three Gorges Project Ecological Environmental Monitoring System, Wanzhou 404020, China)

Abstract

Globally, farmland abandonment has been a major phenomenon for eco-environmental and social landscape changes in the mountain regions. Farmland abandonment led to endangering the capacity of mountain ecosystems as well as variety of eco-environmental processes that play a pivotal role in regional as well local level eco-environment security. This research aims to (i) assess the spatiotemporal degradation of abandoned farmlands, (ii) identify the major causes of farmland degradation, and (iii) analyze the eco-environmental risks triggered or exacerbated by the degradation of abandoned farmlands. We conducted an inventory of the spatiotemporal distribution of abandoned farmlands and their degradation status with Google earth images and by modeling and interpreting low-height remote sensing images taken by an unmanned aerial vehicle (UAV). Geomorphic damages were mapped at the scale of individual abandoned farms. A multivariate regression statistical (MRS) model was used to identify the major causes of degradation. This research revealed that out of the total surveyed farmlands, 92% were already completely irreversibly damaged. The damages started with the disruption of terraces and bulging processes that occurred within the year after abandonment. This degradation induced diverse hazardous processes, such as landslides, debris flows, rock falls, the formation of gullies, soil erosion, and the development of sinkholes, which increase the negative effects of on both land resources and plant succession. Farmland abandonment does not automatically lead to plant colonization because geomorphic damage is intensified prior to colonization. Therefore, land management is required for plant colonization as well as other efforts to reduce degradation induced eco-environmental risk. This study thus could help land planners and environmentalists in the development of suitable guidelines (pre- or post-abandonment) plans, programmes, and legislation to effectively address the problem of abandoned farmland.

Suggested Citation

  • Suresh Chaudhary & Yukuan Wang & Amod Mani Dixit & Narendra Raj Khanal & Pei Xu & Bin Fu & Kun Yan & Qin Liu & Yafeng Lu & Ming Li, 2019. "Spatiotemporal Degradation of Abandoned Farmland and Associated Eco-Environmental Risks in the High Mountains of the Nepalese Himalayas," Land, MDPI, vol. 9(1), pages 1-19, December.
  • Handle: RePEc:gam:jlands:v:9:y:2019:i:1:p:1-:d:299261
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/9/1/1/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/9/1/1/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Krishna Devkota & Amar Regmi & Hamid Pourghasemi & Kohki Yoshida & Biswajeet Pradhan & In Ryu & Megh Dhital & Omar Althuwaynee, 2013. "Landslide susceptibility mapping using certainty factor, index of entropy and logistic regression models in GIS and their comparison at Mugling–Narayanghat road section in Nepal Himalaya," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 65(1), pages 135-165, January.
    2. Menard, Scott, 2004. "Six Approaches to Calculating Standardized Logistic Regression Coefficients," The American Statistician, American Statistical Association, vol. 58, pages 218-223, August.
    3. United Nations, 2016. "The Sustainable Development Goals 2016," Working Papers id:11456, eSocialSciences.
    4. Mauro Agnoletti & Alessandro Errico & Antonio Santoro & Andrea Dani & Federico Preti, 2019. "Terraced Landscapes and Hydrogeological Risk. Effects of Land Abandonment in Cinque Terre (Italy) during Severe Rainfall Events," Sustainability, MDPI, vol. 11(1), pages 1-12, January.
    5. Suresh Chaudhary & Yukuan Wang & Narendra Raj Khanal & Pei Xu & Bin Fu & Amod Mani Dixit & Kun Yan & Qin Liu & Yafeng Lu, 2018. "Social Impact of Farmland Abandonment and Its Eco-Environmental Vulnerability in the High Mountain Region of Nepal: A Case Study of Dordi River Basin," Sustainability, MDPI, vol. 10(7), pages 1-19, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alexander V. Prishchepov & Florian Schierhorn & Fabian Löw, 2021. "Unraveling the Diversity of Trajectories and Drivers of Global Agricultural Land Abandonment," Land, MDPI, vol. 10(2), pages 1-8, January.
    2. Bo Liu & Wei Song & Qian Sun, 2022. "Status, Trend, and Prospect of Global Farmland Abandonment Research: A Bibliometric Analysis," IJERPH, MDPI, vol. 19(23), pages 1-30, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Suresh Chaudhary & Yukuan Wang & Amod Mani Dixit & Narendra Raj Khanal & Pei Xu & Kun Yan & Qin Liu & Yafeng Lu & Ming Li, 2019. "Eco-Environmental Risk Evaluation for Land Use Planning in Areas of Potential Farmland Abandonment in the High Mountains of Nepal Himalayas," Sustainability, MDPI, vol. 11(24), pages 1-20, December.
    2. Ecker, Olivier & Hatzenbuehler, Patrick L. & Mahrt, Kristi, 2018. "Transforming agriculture for improving food and nutrition security among Nigerian farm households," NSSP working papers 56, International Food Policy Research Institute (IFPRI).
    3. Claudia Hanson & Sanni Kujala & Peter Waiswa & Tanya Marchant & Joanna Schellenberg, 2017. "Community-based approaches for neonatal survival: Meta-analyses of randomized trial data," WIDER Working Paper Series wp-2017-137, World Institute for Development Economic Research (UNU-WIDER).
    4. Eugenia Ganea & Valentina Bodrug-Lungu, 2018. "Addressing Inequality in Vocational/ Technical Education by Eliminating Gender Bias," Revista romaneasca pentru educatie multidimensionala - Journal for Multidimensional Education, Editura Lumen, Department of Economics, vol. 10(4), pages 136-155, December.
    5. Gallopín, Gilberto, 2018. "Back to the future," Energy Policy, Elsevier, vol. 123(C), pages 318-324.
    6. Pandey, Shanta, 2017. "Persistent nature of child marriage among women even when it is illegal: The case of Nepal," Children and Youth Services Review, Elsevier, vol. 73(C), pages 242-247.
    7. OGUNNOWO, Fatai Abiodun & Prof. F. A. OKWO & JULIUS, Deborah Nwanne, 2023. "Availability and Utilization of Security Facilities in Federal Tertiary Institutions of Enugu State, Nigeria," International Journal of Research and Innovation in Social Science, International Journal of Research and Innovation in Social Science (IJRISS), vol. 7(5), pages 931-941, May.
    8. Paul L. G. Vlek & Asia Khamzina & Hossein Azadi & Anik Bhaduri & Luna Bharati & Ademola Braimoh & Christopher Martius & Terry Sunderland & Fatemeh Taheri, 2017. "Trade-Offs in Multi-Purpose Land Use under Land Degradation," Sustainability, MDPI, vol. 9(12), pages 1-19, November.
    9. Victor Kasulo & Rochelle Holm & Mavuto Tembo & Wales Singini & Joshua Mchenga, 2020. "Enhancing sustainable sanitation through capacity building and rural sanitation marketing in Malawi," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 22(1), pages 201-215, January.
    10. Fernanda Guedes & Alexandre Szklo & Pedro Rochedo & Frédéric Lantz & Leticia Magalar & Eveline Maria Vásquez Arroyo, 2018. "Climate-Energy-Water Nexus in Brazilian Oil Refineries," Working Papers hal-03188594, HAL.
    11. Eseosa Halima Ighile & Hiroaki Shirakawa & Hiroki Tanikawa, 2022. "Application of GIS and Machine Learning to Predict Flood Areas in Nigeria," Sustainability, MDPI, vol. 14(9), pages 1-33, April.
    12. Alex. B. McBratney & Damien Field & Cristine L.S. Morgan & Jingyi Huang, 2019. "On Soil Capability, Capacity, and Condition," Sustainability, MDPI, vol. 11(12), pages 1-11, June.
    13. Tiantian Zhai, 2021. "Environmental Challenges, Opportunities, and Policy Implications to Materialize China’s Green Belt and Road Initiative," Sustainability, MDPI, vol. 13(18), pages 1-14, September.
    14. R. O. E. Ulakpa & V.U.D. Okwu & K. E. Chukwu & M. O. Eyankware, 2020. "Landslide Susceptibility Modelling In Selected States Across Se. Nigeria," Environment & Ecosystem Science (EES), Zibeline International Publishing, vol. 4(1), pages 23-27, March.
    15. Xinfu Xing & Chenglong Wu & Jinhui Li & Xueyou Li & Limin Zhang & Rongjie He, 2021. "Susceptibility assessment for rainfall-induced landslides using a revised logistic regression method," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 106(1), pages 97-117, March.
    16. Grazia Brunetta & Ombretta Caldarice & Martino Faravelli, 2022. "Mainstreaming climate resilience: A GIS-based methodology to cope with cloudbursts in Turin, Italy," Environment and Planning B, , vol. 49(5), pages 1431-1447, June.
    17. Wirapong Chansanam & Chunqiu Li, 2022. "Scientometrics of Poverty Research for Sustainability Development: Trend Analysis of the 1964–2022 Data through Scopus," Sustainability, MDPI, vol. 14(9), pages 1-19, April.
    18. -, 2021. "The 2020 census round: challenges of the 2030 Agenda for Sustainable Development, the Sustainable Development Goals and the Montevideo Consensus on Population and Development," Población y Desarrollo 46727, Naciones Unidas Comisión Económica para América Latina y el Caribe (CEPAL).
    19. Jónsson, Jón Örvar G. & Davíðsdóttir, Brynhildur & Nikolaidis, Nikolaos P. & Giannakis, Georgios V., 2019. "Tools for Sustainable Soil Management: Soil Ecosystem Services, EROI and Economic Analysis," Ecological Economics, Elsevier, vol. 157(C), pages 109-119.
    20. Shannon L. Sibbald & Nicole Haggerty, 2019. "Integrating Business and Medical Pedagogy to Accomplish the Sustainable Development Goals," Journal of Education for Sustainable Development, , vol. 13(1), pages 92-101, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:9:y:2019:i:1:p:1-:d:299261. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.