IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v8y2019i4p64-d223230.html
   My bibliography  Save this article

Modelling Development of Riparian Ranchlands Using Ecosystem Services at the Aravaipa Watershed, SE Arizona

Author

Listed:
  • Laura M. Norman

    (U.S. Geological Survey, Western Geographic Science Center, 520 N. Park Avenue, Ste. #102K, Tucson, AZ 85719, USA)

  • Miguel L. Villarreal

    (U.S. Geological Survey, Western Geographic Science Center, Menlo Park, CA 94025, USA)

  • Rewati Niraula

    (Texas Institute of Applied Environmental Research (TIAER), Tarleton State University, Stephenville, TX 76402, USA)

  • Mark Haberstich

    (The Nature Conservancy, Aravaipa Canyon Preserve, Willcox, AZ 85643, USA)

  • Natalie R. Wilson

    (U.S. Geological Survey, Western Geographic Science Center, 520 N. Park Avenue, Ste. #102K, Tucson, AZ 85719, USA)

Abstract

This paper describes how subdivision and development of rangelands within a remote and celebrated semi-arid watershed near the US–Mexico border might affect multiple ecohydrological services provided, such as recharge of the aquifer, water and sediment yield, water quality, flow rates and downstream cultural and natural resources. Specifically, we apply an uncalibrated watershed model and land-change forecasting scenario to consider the potential effects of converting rangelands to housing developments and document potential changes in hydrological ecosystem services. A new method to incorporate weather data in watershed modelling is introduced. Results of introducing residential development in this fragile arid environment portray changes in the water budget, including increases in surface-water runoff, water yield, and total sediment loading. Our findings also predict slight reductions in lateral soil water, a component of the water budget that is increasingly becoming recognized as critical to maintaining water availability in arid regions. We discuss how the proposed development on shrub/scrub rangelands could threaten to sever imperative ecohydrological interactions and impact multiple ecosystem services. This research highlights rangeland management issues important for the protection of open space, economic valuation of rangeland ecosystem services, conservation easements, and incentives to develop markets for these.

Suggested Citation

  • Laura M. Norman & Miguel L. Villarreal & Rewati Niraula & Mark Haberstich & Natalie R. Wilson, 2019. "Modelling Development of Riparian Ranchlands Using Ecosystem Services at the Aravaipa Watershed, SE Arizona," Land, MDPI, vol. 8(4), pages 1-21, April.
  • Handle: RePEc:gam:jlands:v:8:y:2019:i:4:p:64-:d:223230
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/8/4/64/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/8/4/64/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Havstad, Kris M. & Peters, Debra P.C. & Skaggs, Rhonda & Brown, Joel & Bestelmeyer, Brandon & Fredrickson, Ed & Herrick, Jeffrey & Wright, Jack, 2007. "Ecological services to and from rangelands of the United States," Ecological Economics, Elsevier, vol. 64(2), pages 261-268, December.
    2. Logsdon, Rebecca A. & Chaubey, Indrajeet, 2013. "A quantitative approach to evaluating ecosystem services," Ecological Modelling, Elsevier, vol. 257(C), pages 57-65.
    3. Laura Norman & Nita Tallent-Halsell & William Labiosa & Matt Weber & Amy McCoy & Katie Hirschboeck & James Callegary & Charles Van Riper & Floyd Gray, 2010. "Developing an Ecosystem Services Online Decision Support Tool to Assess the Impacts of Climate Change and Urban Growth in the Santa Cruz Watershed; Where We Live, Work, and Play," Sustainability, MDPI, vol. 2(7), pages 1-26, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nicolás Ruiz, Néstor & Suárez Alonso, María Luisa & Vidal-Abarca, María Rosario, 2021. "Contributions of dry rivers to human well-being: A global review for future research," Ecosystem Services, Elsevier, vol. 50(C).
    2. Urša Vilhar, 2025. "Runoff and Evapotranspiration–Precipitation Ratios as Indicators of Water Regulation Ecosystem Services in Urban Forests," Land, MDPI, vol. 14(4), pages 1-26, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nicolás Ruiz, Néstor & Suárez Alonso, María Luisa & Vidal-Abarca, María Rosario, 2021. "Contributions of dry rivers to human well-being: A global review for future research," Ecosystem Services, Elsevier, vol. 50(C).
    2. Weber, Matthew A. & Meixner, Thomas & Stromberg, Juliet C., 2016. "Valuing instream-related services of wastewater," Ecosystem Services, Elsevier, vol. 21(PA), pages 59-71.
    3. Benavides, Raúl Andrés Molina & Gaona, Rómulo Campos & Atzori, Alberto Stanislao & Sánchez, Luisa Fernanda & Guerrero, Hugo Sánchez, 2023. "Application of a system dynamics model to evaluate the implementation of payment for environmental services as a reconversion mechanism in high mountain farming," Ecological Modelling, Elsevier, vol. 484(C).
    4. Subash Dahal & Dorcas Franklin & Anish Subedi & Miguel Cabrera & Dennis Hancock & Kishan Mahmud & Laura Ney & Cheolwoo Park & Deepak Mishra, 2020. "Strategic Grazing in Beef-Pastures for Improved Soil Health and Reduced Runoff-Nitrate-A Step towards Sustainability," Sustainability, MDPI, vol. 12(2), pages 1-15, January.
    5. Mireille Chiroleu-Assouline & Sébastien Roussel, 2010. "Contract Design to Sequester Carbon in Agricultural Soils," Documents de travail du Centre d'Economie de la Sorbonne 10060, Université Panthéon-Sorbonne (Paris 1), Centre d'Economie de la Sorbonne.
    6. Nina Zarrineh & Karim C. Abbaspour & Ann Van Griensven & Bernard Jeangros & Annelie Holzkämper, 2018. "Model-Based Evaluation of Land Management Strategies with Regard to Multiple Ecosystem Services," Sustainability, MDPI, vol. 10(11), pages 1-21, October.
    7. Sekela Twisa & Mohamed Mwabumba & Mathew Kurian & Manfred F. Buchroithner, 2020. "Impact of Land-Use/Land-Cover Change on Drinking Water Ecosystem Services in Wami River Basin, Tanzania," Resources, MDPI, vol. 9(4), pages 1-18, April.
    8. Zhang, Da & Huang, Qingxu & He, Chunyang & Wu, Jianguo, 2017. "Impacts of urban expansion on ecosystem services in the Beijing-Tianjin-Hebei urban agglomeration, China: A scenario analysis based on the Shared Socioeconomic Pathways," Resources, Conservation & Recycling, Elsevier, vol. 125(C), pages 115-130.
    9. Anna Salachna & Katarzyna Marcol & Jan Broda & Damian Chmura, 2022. "The Contribution of Environmental and Cultural Aspects of Pastoralism in the Provision of Ecosystem Services: The Case of the Silesian Beskid Mts (Southern Poland)," Sustainability, MDPI, vol. 14(16), pages 1-14, August.
    10. Song, Wei & Deng, Xiangzheng & Yuan, Yongwei & Wang, Zhan & Li, Zhaohua, 2015. "Impacts of land-use change on valued ecosystem service in rapidly urbanized North China Plain," Ecological Modelling, Elsevier, vol. 318(C), pages 245-253.
    11. Colin Hultgren Egegård & Maja Lindborg & Åsa Gren & Lars Marcus & Meta Berghauser Pont & Johan Colding, 2024. "Climate Proofing Cities by Navigating Nature-Based Solutions in a Multi-Scale, Social–Ecological Urban Planning Context: A Case Study of Flood Protection in the City of Gothenburg, Sweden," Land, MDPI, vol. 13(2), pages 1-16, January.
    12. Lingling Hou & Pengfei Liu & Xiaohui Tian, 2023. "Grassland tenure reform and grassland quality in China," American Journal of Agricultural Economics, John Wiley & Sons, vol. 105(5), pages 1388-1404, October.
    13. Ochoa, Vivian & Urbina-Cardona, Nicolás, 2017. "Tools for spatially modeling ecosystem services: Publication trends, conceptual reflections and future challenges," Ecosystem Services, Elsevier, vol. 26(PA), pages 155-169.
    14. Bruno, Ilaria & Mania, Ilaria & Lovera, Matteo & Brondino, Luca & Peano, Cristiana, 2025. "Vegetation-based Ecological Functions Sustainability Index (VEFSI) for optimizing ecosystem services in orchards," Agricultural Systems, Elsevier, vol. 223(C).
    15. Barbara Wróbel & Waldemar Zielewicz & Mariola Staniak, 2023. "Challenges of Pasture Feeding Systems—Opportunities and Constraints," Agriculture, MDPI, vol. 13(5), pages 1-31, April.
    16. Hailey Wilmer & J. Bret Taylor & Daniel Macon & Matthew C. Reeves & Carrie S. Wilson & Jacalyn Mara Beck & Nicole K. Strong, 2025. "Loss of seasonal ranges reshapes transhumant adaptive capacity: Thirty-five years at the US Sheep Experiment Station," Agriculture and Human Values, Springer;The Agriculture, Food, & Human Values Society (AFHVS), vol. 42(1), pages 545-563, March.
    17. Francesco Riccioli & Roberto Fratini & Claudio Fagarazzi & Mario Cozzi & Mauro Viccaro & Severino Romano & Duccio Rocchini & Salomon Espinosa Diaz & Clara Tattoni, 2020. "Mapping the Recreational Value of Coppices’ Management Systems in Tuscany," Sustainability, MDPI, vol. 12(19), pages 1-18, September.
    18. Liqun Shao & Haibin Chen & Chen Zhang & Xuexi Huo, 2017. "Effects of Major Grassland Conservation Programs Implemented in Inner Mongolia since 2000 on Vegetation Restoration and Natural and Anthropogenic Disturbances to Their Success," Sustainability, MDPI, vol. 9(3), pages 1-15, March.
    19. Silva-Olaya, Adriana M. & Ortíz-Morea, Fausto A. & España-Cetina, Gina P. & Olaya-Montes, Andrés & Grados, Daniel & Gasparatos, Alexandros & Cherubin, Mauricio Roberto, 2022. "Composite index for soil-related ecosystem services assessment: Insights from rainforest-pasture transitions in the Colombian Amazon," Ecosystem Services, Elsevier, vol. 57(C).
    20. Nedkov, Stoyan & Campagne, Sylvie & Borisova, Bilyana & Krpec, Petr & Prodanova, Hristina & Kokkoris, Ioannis P. & Hristova, Desislava & Le Clec'h, Solen & Santos-Martin, Fernando & Burkhard, Benjamin, 2022. "Modeling water regulation ecosystem services: A review in the context of ecosystem accounting," Ecosystem Services, Elsevier, vol. 56(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:8:y:2019:i:4:p:64-:d:223230. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.