IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v8y2019i10p144-d270144.html
   My bibliography  Save this article

Projecting Urbanization and Landscape Change at Large Scale Using the FUTURES Model

Author

Listed:
  • Derek Van Berkel

    (Center for Geospatial Analytics, North Carolina State University, Raleigh, NC 27695, USA
    School for Environment and Sustainability, University of Michigan, Ann Arbor, MI 48109, USA
    Current address: School for Environment and Sustainability, University of Michigan, Dana Building, 440 Church Street Ann Arbor, MI 48109, USA.)

  • Ashwin Shashidharan

    (Center for Geospatial Analytics, North Carolina State University, Raleigh, NC 27695, USA
    Department of Computer Science, North Carolina State University, Raleigh, NC 27695, USA)

  • Rua S. Mordecai

    (U.S. Fish & Wildlife Service, South Atlantic Landscape Conservation Cooperative, Raleigh, NC 27699, USA)

  • Raju Vatsavai

    (Center for Geospatial Analytics, North Carolina State University, Raleigh, NC 27695, USA
    Department of Computer Science, North Carolina State University, Raleigh, NC 27695, USA)

  • Anna Petrasova

    (Center for Geospatial Analytics, North Carolina State University, Raleigh, NC 27695, USA)

  • Vaclav Petras

    (Center for Geospatial Analytics, North Carolina State University, Raleigh, NC 27695, USA)

  • Helena Mitasova

    (Center for Geospatial Analytics, North Carolina State University, Raleigh, NC 27695, USA
    Department of Marine, Earth and Atmospheric Sciences, North Carolina State University, Raleigh, NC 27695, USA)

  • John B. Vogler

    (Center for Geospatial Analytics, North Carolina State University, Raleigh, NC 27695, USA)

  • Ross K. Meentemeyer

    (Center for Geospatial Analytics, North Carolina State University, Raleigh, NC 27695, USA
    Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC 27695, USA)

Abstract

Increasing population and rural to urban migration are accelerating urbanization globally, permanently transforming natural systems over large extents. Modelling landscape change over large regions, however, presents particular challenges due to local-scale variations in social and environmental factors that drive land change. We simulated urban development across the South Atlantic States (SAS), a region experiencing rapid population growth and urbanization, using FUTURES—an open source land change model that uses demand for development, local development suitability factors, and a stochastic patch growing algorithm for projecting alternative futures of urban form and landscape change. New advances to the FUTURES modelling framework allow for high resolution projections over large spatial extents by leveraging parallel computing. We simulated the adoption of different urban growth strategies that encourage settlement densification in the SAS as alternatives to the region’s increasing sprawl. Evaluation of projected patterns indicate a 15% increase in urban lands by 2050 given a status quo development scenario compared to a 14.8% increase for the Infill strategy. Status quo development resulted in a 3.72% loss of total forests, 2.97% loss of highly suitable agricultural land, and 3.69% loss of ecologically significant lands. An alternative Infill scenario resulted in similar losses of total forest (3.62%) and ecologically significant lands (3.63%) yet consumed less agricultural lands (1.23% loss). Moreover, infill development patterns differed qualitatively from the status quo and resulted in less fragmentation of the landscape.

Suggested Citation

  • Derek Van Berkel & Ashwin Shashidharan & Rua S. Mordecai & Raju Vatsavai & Anna Petrasova & Vaclav Petras & Helena Mitasova & John B. Vogler & Ross K. Meentemeyer, 2019. "Projecting Urbanization and Landscape Change at Large Scale Using the FUTURES Model," Land, MDPI, vol. 8(10), pages 1-28, September.
  • Handle: RePEc:gam:jlands:v:8:y:2019:i:10:p:144-:d:270144
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/8/10/144/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/8/10/144/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Brian Pickard & Joshua Gray & Ross Meentemeyer, 2017. "Comparing Quantity, Allocation and Configuration Accuracy of Multiple Land Change Models," Land, MDPI, vol. 6(3), pages 1-21, August.
    2. Magliocca, Nicholas & McConnell, Virginia & Walls, Margaret, 2015. "Exploring sprawl: Results from an economic agent-based model of land and housing markets," Ecological Economics, Elsevier, vol. 113(C), pages 114-125.
    3. Robert Pontius & Wideke Boersma & Jean-Christophe Castella & Keith Clarke & Ton Nijs & Charles Dietzel & Zengqiang Duan & Eric Fotsing & Noah Goldstein & Kasper Kok & Eric Koomen & Christopher Lippitt, 2008. "Comparing the input, output, and validation maps for several models of land change," The Annals of Regional Science, Springer;Western Regional Science Association, vol. 42(1), pages 11-37, March.
    4. Neumann, Kathleen & Verburg, Peter H. & Stehfest, Elke & Müller, Christoph, 2010. "The yield gap of global grain production: A spatial analysis," Agricultural Systems, Elsevier, vol. 103(5), pages 316-326, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yang Gao & Zhen Shen & Yuexin Liu & Chaoyue Yu & Lihan Cui & Cuiling Song, 2023. "Optimization of differentiated regional land development patterns based on urban expansion simulation—A case in China," Growth and Change, Wiley Blackwell, vol. 54(1), pages 45-73, March.
    2. Syafri Syafri & Batara Surya & Ridwan Ridwan & Syamsul Bahri & Emil Salim Rasyidi & Sudarman Sudarman, 2020. "Water Quality Pollution Control and Watershed Management Based on Community Participation in Maros City, South Sulawesi, Indonesia," Sustainability, MDPI, vol. 12(24), pages 1-39, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Charlotte Shade & Peleg Kremer, 2019. "Predicting Land Use Changes in Philadelphia Following Green Infrastructure Policies," Land, MDPI, vol. 8(2), pages 1-19, February.
    2. Behnoosh Abbasnezhad & Jesse B. Abrams & Jeffrey Hepinstall-Cymerman, 2023. "Incorporating Social and Policy Drivers into Land-Use and Land-Cover Projection," Sustainability, MDPI, vol. 15(19), pages 1-18, September.
    3. Małgorzata Jagła & Piotr Szulc & Katarzyna Ambroży-Deręgowska & Iwona Mejza & Joanna Kobus-Cisowska, 2019. "Yielding of two types of maize cultivars in relation to selected agrotechnical factors," Plant, Soil and Environment, Czech Academy of Agricultural Sciences, vol. 65(8), pages 416-423.
    4. Yang, Yuanyuan & Bao, Wenkai & Liu, Yansui, 2020. "Scenario simulation of land system change in the Beijing-Tianjin-Hebei region," Land Use Policy, Elsevier, vol. 96(C).
    5. Dietrich, Jan Philipp & Schmitz, Christoph & Müller, Christoph & Fader, Marianela & Lotze-Campen, Hermann & Popp, Alexander, 2012. "Measuring agricultural land-use intensity – A global analysis using a model-assisted approach," Ecological Modelling, Elsevier, vol. 232(C), pages 109-118.
    6. Aritta Suwarno & Meine van Noordwijk & Hans-Peter Weikard & Desi Suyamto, 2018. "Indonesia’s forest conversion moratorium assessed with an agent-based model of Land-Use Change and Ecosystem Services (LUCES)," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 23(2), pages 211-229, February.
    7. Andrew Allan & Ali Soltani & Mohammad Hamed Abdi & Melika Zarei, 2022. "Driving Forces behind Land Use and Land Cover Change: A Systematic and Bibliometric Review," Land, MDPI, vol. 11(8), pages 1-20, August.
    8. Hampf, Anna C. & Carauta, Marcelo & Latynskiy, Evgeny & Libera, Affonso A.D. & Monteiro, Leonardo & Sentelhas, Paulo & Troost, Christian & Berger, Thomas & Nendel, Claas, 2018. "The biophysical and socio-economic dimension of yield gaps in the southern Amazon – A bio-economic modelling approach," Agricultural Systems, Elsevier, vol. 165(C), pages 1-13.
    9. Hong Shi & Ji Yang & Qijuan Liu & Taohong Li & Ning Chris Chen, 2024. "Impacts of Climate and Land-Use Change on Fraction Vegetation Coverage Based on PLUS-Dimidiate Pixel Model," Sustainability, MDPI, vol. 16(23), pages 1-18, November.
    10. Elodie Letort & Pierre Dupraz & Laurent Piet, 2017. "The impact of environmental regulations on the farmland market and farm structures: An agent-based model applied to the Brittany region of France," Working Papers SMART 17-01, INRAE UMR SMART.
    11. Deepayan Debnath & Madhu Khanna & Deepak Rajagopal & David Zilberman, 2019. "The Future of Biofuels in an Electrifying Global Transportation Sector: Imperative, Prospects and Challenges," Applied Economic Perspectives and Policy, John Wiley & Sons, vol. 41(4), pages 563-582, December.
    12. Ju-Sung Lee & Tatiana Filatova & Arika Ligmann-Zielinska & Behrooz Hassani-Mahmooei & Forrest Stonedahl & Iris Lorscheid & Alexey Voinov & J. Gareth Polhill & Zhanli Sun & Dawn C. Parker, 2015. "The Complexities of Agent-Based Modeling Output Analysis," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 18(4), pages 1-4.
    13. Luis Santos Pereira, 2017. "Water, Agriculture and Food: Challenges and Issues," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(10), pages 2985-2999, August.
    14. Zhen Shi & Huinan Huang & Yingju Wu & Yung-Ho Chiu & Shijiong Qin, 2020. "Climate Change Impacts on Agricultural Production and Crop Disaster Area in China," IJERPH, MDPI, vol. 17(13), pages 1-23, July.
    15. Margaret Gitau & Nathaniel Bailey, 2012. "Multi-Layer Assessment of Land Use and Related Changes for Decision Support in a Coastal Zone Watershed," Land, MDPI, vol. 1(1), pages 1-27, December.
    16. Giller, Ken E. & Andersson, Jens & Delaune, Thomas & Silva, João Vasco & Descheemaeker, Katrien & van de Ven, Gerrie & Schut, Antonius G.T. & van Wijk, Mark & Hammond, Jim & Hochman, Zvi & Taulya, God, 2022. "IFAD Research Series 83: The future of farming: who will produce our food?," IFAD Research Series 322005, International Fund for Agricultural Development (IFAD).
    17. Larson,Donald F. & Muraoka,Rie & Otsuka,Keijiro, 2016. "On the central role of small farms in African rural development strategies," Policy Research Working Paper Series 7710, The World Bank.
    18. Xiaoli Hu & Xin Li & Ling Lu, 2018. "Modeling the Land Use Change in an Arid Oasis Constrained by Water Resources and Environmental Policy Change Using Cellular Automata Models," Sustainability, MDPI, vol. 10(8), pages 1-14, August.
    19. Helena Kahiluoto & Janne Kaseva, 2016. "No Evidence of Trade-Off between Farm Efficiency and Resilience: Dependence of Resource-Use Efficiency on Land-Use Diversity," PLOS ONE, Public Library of Science, vol. 11(9), pages 1-16, September.
    20. Wu, Wei & Yeager, Kevin M. & Peterson, Mark S. & Fulford, Richard S., 2015. "Neutral models as a way to evaluate the Sea Level Affecting Marshes Model (SLAMM)," Ecological Modelling, Elsevier, vol. 303(C), pages 55-69.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:8:y:2019:i:10:p:144-:d:270144. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.