IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v7y2018i2p47-d140720.html
   My bibliography  Save this article

Rangeland Livelihood Strategies under Varying Climate Regimes: Model Insights from Southern Kenya

Author

Listed:
  • Rebecca Kariuki

    (York Institute for Tropical Ecosystems, Environment Department, University of York, Heslington, York YO10 5NG, UK
    School of Life Sciences and Bio-Engineering, The Nelson Mandela African Institution of Science and Technology, P.O. Box 447 Arusha, Tanzania)

  • Simon Willcock

    (Centre for Biological Sciences, Faculty of Natural & Environmental Sciences, University of Southampton, Highfield Campus, Southampton SO17 1BJ, UK
    School of Environment, Natural Resources and Geography, Bangor University, Deiniol Road, Bangor, Gwynedd LL57 2UW, UK)

  • Rob Marchant

    (York Institute for Tropical Ecosystems, Environment Department, University of York, Heslington, York YO10 5NG, UK)

Abstract

Rangelands throughout sub-Saharan Africa are currently undergoing two major pressures: climate change (through altered rainfall and seasonality patterns) and habitat fragmentation (brought by land use change driven by land demand for agriculture and conservation). Here we explore these dimensions, investigating the impact of land use change decisions, by pastoralists in southern Kenya rangelands, on human well-being and animal densities using an agent-based model. The constructed agent-based model uses input biomass data simulated by the Lund-Potsdam-Jena General Ecosystem Simulator (LPJ-GUESS) dynamic vegetation model and parameterized with data from literature. Scenarios of land use change under different rainfall years, land tenure types and levels of wildlife conservation support were simulated. Reflecting reality, our results show livestock grazing as the predominant land use that changes with precipitation and land tenure leading to varying livelihood strategies. For example, agriculture is the most common livelihood in wet years and conservation levels increase with increasing support of wildlife conservation initiatives. Our model demonstrates the complex and multiple interactions between pastoralists, land management and the environment. We highlight the importance of understanding the conditions driving the sustainability of semi-arid rangelands and the communities they support, and the role of external actors, such as wildlife conservation investors, in East Africa.

Suggested Citation

  • Rebecca Kariuki & Simon Willcock & Rob Marchant, 2018. "Rangeland Livelihood Strategies under Varying Climate Regimes: Model Insights from Southern Kenya," Land, MDPI, vol. 7(2), pages 1-22, April.
  • Handle: RePEc:gam:jlands:v:7:y:2018:i:2:p:47-:d:140720
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/7/2/47/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/7/2/47/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ju-Sung Lee & Tatiana Filatova & Arika Ligmann-Zielinska & Behrooz Hassani-Mahmooei & Forrest Stonedahl & Iris Lorscheid & Alexey Voinov & J. Gareth Polhill & Zhanli Sun & Dawn C. Parker, 2015. "The Complexities of Agent-Based Modeling Output Analysis," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 18(4), pages 1-4.
    2. Grimm, Volker & Berger, Uta & DeAngelis, Donald L. & Polhill, J. Gary & Giske, Jarl & Railsback, Steven F., 2010. "The ODD protocol: A review and first update," Ecological Modelling, Elsevier, vol. 221(23), pages 2760-2768.
    3. Thornton, P.K. & BurnSilver, S.B. & Boone, R.B. & Galvin, K.A., 2006. "Modelling the impacts of group ranch subdivision on agro-pastoral households in Kajiado, Kenya," Agricultural Systems, Elsevier, vol. 87(3), pages 331-356, March.
    4. Bert, Federico E. & Rovere, Santiago L. & Macal, Charles M. & North, Michael J. & Podestá, Guillermo P., 2014. "Lessons from a comprehensive validation of an agent based-model: The experience of the Pampas Model of Argentinean agricultural systems," Ecological Modelling, Elsevier, vol. 273(C), pages 284-298.
    5. Clemens Greiner & Innocent Mwaka, 2016. "Agricultural change at the margins: adaptation and intensification in a Kenyan dryland," Journal of Eastern African Studies, Taylor & Francis Journals, vol. 10(1), pages 130-149, January.
    6. Bulte, Erwin H. & Boone, Randall B. & Stringer, Randy & Thornton, Philip K., 2008. "Elephants or onions? Paying for nature in Amboseli, Kenya," Environment and Development Economics, Cambridge University Press, vol. 13(3), pages 395-414, June.
    7. Bodin, P. & Olin, S. & Pugh, T.A.M. & Arneth, A., 2016. "Accounting for interannual variability in agricultural intensification: The potential of crop selection in Sub-Saharan Africa," Agricultural Systems, Elsevier, vol. 148(C), pages 159-168.
    8. David M. Anderson & Michael Bollig, 2016. "Resilience and collapse: histories, ecologies, conflicts and identities in the Baringo-Bogoria basin, Kenya," Journal of Eastern African Studies, Taylor & Francis Journals, vol. 10(1), pages 1-20, January.
    9. Rasmussen, Laura Vang & Rasmussen, Kjeld & Reenberg, Anette & Proud, Simon, 2012. "A system dynamics approach to land use changes in agro-pastoral systems on the desert margins of Sahel," Agricultural Systems, Elsevier, vol. 107(C), pages 56-64.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rebecca W. Kariuki & David Western & Simon Willcock & Robert Marchant, 2021. "Assessing Interactions between Agriculture, Livestock Grazing and Wildlife Conservation Land Uses: A Historical Example from East Africa," Land, MDPI, vol. 10(1), pages 1-19, January.
    2. Samane Ghazali & Hossein Azadi & Kristina Janečková & Petr Sklenička & Alishir Kurban & Sedef Cakir, 2021. "Indigenous knowledge about climate change and sustainability of nomadic livelihoods: understanding adaptability coping strategies," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(11), pages 16744-16768, November.
    3. Sheona Shackleton & Vanessa Masterson & Paul Hebinck & Chinwe Ifejika Speranza & Dian Spear & Maria Tengö, 2019. "Editorial for Special Issue: “Livelihood and Landscape Change in Africa: Future Trajectories for Improved Well-Being under a Changing Climate”," Land, MDPI, vol. 8(8), pages 1-8, July.
    4. Zhilong Wu & Bo Li & Xuhuan Dai & Ying Hou, 2020. "Coupled Relationship between Rural Livelihoods and the Environment at a Village Scale: A Case Study in the Mongolian Plateau," Land, MDPI, vol. 9(2), pages 1-22, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Utomo, Dhanan Sarwo & Onggo, Bhakti Stephan & Eldridge, Stephen, 2018. "Applications of agent-based modelling and simulation in the agri-food supply chains," European Journal of Operational Research, Elsevier, vol. 269(3), pages 794-805.
    2. Diego Ferraro & Daniela Blanco & Sebasti'an Pessah & Rodrigo Castro, 2021. "Land use change in agricultural systems: an integrated ecological-social simulation model of farmer decisions and cropping system performance based on a cellular automata approach," Papers 2109.01031, arXiv.org, revised Sep 2021.
    3. Müller, Birgit & Schulze, Jule & Kreuer, David & Linstädter, Anja & Frank, Karin, 2015. "How to avoid unsustainable side effects of managing climate risk in drylands — The supplementary feeding controversy," Agricultural Systems, Elsevier, vol. 139(C), pages 153-165.
    4. Kremmydas, Dimitris & Athanasiadis, Ioannis N. & Rozakis, Stelios, 2018. "A review of Agent Based Modeling for agricultural policy evaluation," Agricultural Systems, Elsevier, vol. 164(C), pages 95-106.
    5. Fust, Pascal & Schlecht, Eva, 2018. "Integrating spatio-temporal variation in resource availability and herbivore movements into rangeland management: RaMDry—An agent-based model on livestock feeding ecology in a dynamic, heterogeneous, ," Ecological Modelling, Elsevier, vol. 369(C), pages 13-41.
    6. Giacomo Ravaioli & Tiago Domingos & Ricardo F. M. Teixeira, 2023. "A Framework for Data-Driven Agent-Based Modelling of Agricultural Land Use," Land, MDPI, vol. 12(4), pages 1-17, March.
    7. Matthew Oldham, 2019. "Understanding How Short-Termism and a Dynamic Investor Network Affects Investor Returns: An Agent-Based Perspective," Complexity, Hindawi, vol. 2019, pages 1-21, July.
    8. Huber, Robert & Bakker, Martha & Balmann, Alfons & Berger, Thomas & Bithell, Mike & Brown, Calum & Grêt-Regamey, Adrienne & Xiong, Hang & Le, Quang Bao & Mack, Gabriele & Meyfroidt, Patrick & Millingt, 2018. "Representation of decision-making in European agricultural agent-based models," Agricultural Systems, Elsevier, vol. 167(C), pages 143-160.
    9. Lisa Huber & Nico Bahro & Georg Leitinger & Ulrike Tappeiner & Ulrich Strasser, 2019. "Agent-Based Modelling of a Coupled Water Demand and Supply System at the Catchment Scale," Sustainability, MDPI, vol. 11(21), pages 1-15, November.
    10. Halsey, Samniqueka J. & Miller, James R., 2018. "A spatial agent-based model of the disease vector Ixodes scapularis to explore host-tick associations," Ecological Modelling, Elsevier, vol. 387(C), pages 96-106.
    11. Eileen Young & Benigno Aguirre, 2021. "PrioritEvac: an Agent-Based Model (ABM) for Examining Social Factors of Building Fire Evacuation," Information Systems Frontiers, Springer, vol. 23(5), pages 1083-1096, September.
    12. Merel Goedegebuure & Jessica Melbourne-Thomas & Stuart P Corney & Clive R McMahon & Mark A Hindell, 2018. "Modelling southern elephant seals Mirounga leonina using an individual-based model coupled with a dynamic energy budget," PLOS ONE, Public Library of Science, vol. 13(3), pages 1-37, March.
    13. Graciela del Carmen Nava Guerrero & Gijsbert Korevaar & Helle Hvid Hansen & Zofia Lukszo, 2019. "Agent-Based Modeling of a Thermal Energy Transition in the Built Environment," Energies, MDPI, vol. 12(5), pages 1-25, March.
    14. Peter George Johnson, 2015. "Agent-Based Models as “Interested Amateurs”," Land, MDPI, vol. 4(2), pages 1-19, April.
    15. Christian Troost & Julia Parussis-Krech & Matías Mejaíl & Thomas Berger, 2023. "Boosting the Scalability of Farm-Level Models: Efficient Surrogate Modeling of Compositional Simulation Output," Computational Economics, Springer;Society for Computational Economics, vol. 62(3), pages 721-759, October.
    16. Wallentin, Gudrun, 2017. "Spatial simulation: A spatial perspective on individual-based ecology—a review," Ecological Modelling, Elsevier, vol. 350(C), pages 30-41.
    17. Bourceret, Amélie & Amblard, Laurence & Mathias, Jean-Denis, 2022. "Adapting the governance of social–ecological systems to behavioural dynamics: An agent-based model for water quality management using the theory of planned behaviour," Ecological Economics, Elsevier, vol. 194(C).
    18. Molood Ale Ebrahim Dehkordi & Amineh Ghorbani & Giangiacomo Bravo & Mike Farjam & René van Weeren & Anders Forsman & Tine De Moor, 2021. "Long-Term Dynamics of Institutions: Using ABM as a Complementary Tool to Support Theory Development in Historical Studies," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 24(4), pages 1-7.
    19. Wang, Hsiao-Hsuan & Grant, William E. & Elliott, Norman C. & Brewer, Michael J. & Koralewski, Tomasz E. & Westbrook, John K. & Alves, Tavvs M. & Sword, Gregory A., 2019. "Integrated modelling of the life cycle and aeroecology of wind-borne pests in temporally-variable spatially-heterogeneous environment," Ecological Modelling, Elsevier, vol. 399(C), pages 23-38.
    20. Becher, M.A. & Grimm, V. & Knapp, J. & Horn, J. & Twiston-Davies, G. & Osborne, J.L., 2016. "BEESCOUT: A model of bee scouting behaviour and a software tool for characterizing nectar/pollen landscapes for BEEHAVE," Ecological Modelling, Elsevier, vol. 340(C), pages 126-133.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:7:y:2018:i:2:p:47-:d:140720. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.