IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v3y2014i2p524-540d37343.html
   My bibliography  Save this article

Mapping Woodland Cover in the Miombo Ecosystem: A Comparison of Machine Learning Classifiers

Author

Listed:
  • Courage Kamusoko

    (Asia Air Survey (AAS) Co., Ltd., Kanagawa 215-0004, Japan)

  • Jonah Gamba

    (TOPS Systems Corp., Tsukuba 305-0032, Japan)

  • Hitomi Murakami

    (Department of Computer and Information Science, Faculty of Science and Technology, Seikei University, Tokyo 180-8633, Japan)

Abstract

Miombo woodlands in Southern Africa are experiencing accelerated changes due to natural and anthropogenic disturbances. In order to formulate sustainable woodland management strategies in the Miombo ecosystem, timely and up-to-date land cover information is required. Recent advances in remote sensing technology have improved land cover mapping in tropical evergreen ecosystems. However, woodland cover mapping remains a challenge in the Miombo ecosystem. The objective of the study was to evaluate the performance of decision trees (DT), random forests (RF), and support vector machines (SVM) in the context of improving woodland and non-woodland cover mapping in the Miombo ecosystem in Zimbabwe. We used Multidate Landsat 8 spectral and spatial dependence (Moran’s I) variables to map woodland and non-woodland cover. Results show that RF classifier outperformed the SVM and DT classifiers by 4% and 15%, respectively. The RF importance measures show that multidate Landsat 8 spectral and spatial variables had the greatest influence on class-separability in the study area. Therefore, the RF classifier has potential to improve woodland cover mapping in the Miombo ecosystem.

Suggested Citation

  • Courage Kamusoko & Jonah Gamba & Hitomi Murakami, 2014. "Mapping Woodland Cover in the Miombo Ecosystem: A Comparison of Machine Learning Classifiers," Land, MDPI, vol. 3(2), pages 1-17, June.
  • Handle: RePEc:gam:jlands:v:3:y:2014:i:2:p:524-540:d:37343
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/3/2/524/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/3/2/524/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Gambiza, J. & Bond, W. & Frost, P. G. H. & Higgins, S., 2000. "SPECIAL SECTION: LAND USE OPTIONS IN DRY TROPICAL WOODLAND ECOSYSTEMS IN ZIMBABWE: A simulation model of miombo woodland dynamics under different management regimes," Ecological Economics, Elsevier, vol. 33(3), pages 353-368, June.
    2. Karatzoglou, Alexandros & Meyer, David & Hornik, Kurt, 2006. "Support Vector Machines in R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 15(i09).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Paolo Sorino & Maria Gabriella Caruso & Giovanni Misciagna & Caterina Bonfiglio & Angelo Campanella & Antonella Mirizzi & Isabella Franco & Antonella Bianco & Claudia Buongiorno & Rosalba Liuzzi & Ann, 2020. "Selecting the best machine learning algorithm to support the diagnosis of Non-Alcoholic Fatty Liver Disease: A meta learner study," PLOS ONE, Public Library of Science, vol. 15(10), pages 1-15, October.
    2. Na Tang & Maoxiang Yuan & Zhijun Chen & Jian Ma & Rui Sun & Yide Yang & Quanyuan He & Xiaowei Guo & Shixiong Hu & Junhua Zhou, 2023. "Machine Learning Prediction Model of Tuberculosis Incidence Based on Meteorological Factors and Air Pollutants," IJERPH, MDPI, vol. 20(5), pages 1-17, February.
    3. Moro Russ A. & Härdle Wolfgang K. & Schäfer Dorothea, 2017. "Company rating with support vector machines," Statistics & Risk Modeling, De Gruyter, vol. 34(1-2), pages 55-67, June.
    4. Ana Patrícia Rocha & Hugo Miguel Pereira Choupina & Maria do Carmo Vilas-Boas & José Maria Fernandes & João Paulo Silva Cunha, 2018. "System for automatic gait analysis based on a single RGB-D camera," PLOS ONE, Public Library of Science, vol. 13(8), pages 1-24, August.
    5. Phichhang Ou & Hengshan Wang, 2009. "Prediction of Stock Market Index Movement by Ten Data Mining Techniques," Modern Applied Science, Canadian Center of Science and Education, vol. 3(12), pages 1-28, December.
    6. Luca Longo, 2018. "Experienced mental workload, perception of usability, their interaction and impact on task performance," PLOS ONE, Public Library of Science, vol. 13(8), pages 1-36, August.
    7. Perthame, Emeline & Forbes, Florence & Deleforge, Antoine, 2018. "Inverse regression approach to robust nonlinear high-to-low dimensional mapping," Journal of Multivariate Analysis, Elsevier, vol. 163(C), pages 1-14.
    8. Jindřich Špička, 2018. "How Do Agricultural Biogas Investments Affect Czech Farms?," Central European Business Review, Prague University of Economics and Business, vol. 2018(4), pages 34-60.
    9. Santiago José Elías Velazco & Franklin Galvão & Fabricio Villalobos & Paulo De Marco Júnior, 2017. "Using worldwide edaphic data to model plant species niches: An assessment at a continental extent," PLOS ONE, Public Library of Science, vol. 12(10), pages 1-24, October.
    10. Christian Bunn & Peter Läderach & Oriana Ovalle Rivera & Dieter Kirschke, 2015. "A bitter cup: climate change profile of global production of Arabica and Robusta coffee," Climatic Change, Springer, vol. 129(1), pages 89-101, March.
    11. Samia Zaoui & Clovis Foguem & Dieudonné Tchuente & Samuel Fosso-Wamba & Bernard Kamsu-Foguem, 2023. "The Viability of Supply Chains with Interpretable Learning Systems: The Case of COVID-19 Vaccine Deliveries," Global Journal of Flexible Systems Management, Springer;Global Institute of Flexible Systems Management, vol. 24(4), pages 633-657, December.
    12. Akın, Melda, 2015. "A novel approach to model selection in tourism demand modeling," Tourism Management, Elsevier, vol. 48(C), pages 64-72.
    13. Li, Xinyi & Yao, Runming, 2020. "A machine-learning-based approach to predict residential annual space heating and cooling loads considering occupant behaviour," Energy, Elsevier, vol. 212(C).
    14. Oosterlinck, Dieter & Benoit, Dries F. & Baecke, Philippe, 2020. "From one-class to two-class classification by incorporating expert knowledge: Novelty detection in human behaviour," European Journal of Operational Research, Elsevier, vol. 282(3), pages 1011-1024.
    15. The-Hanh Pham & Jahmunah Vicnesh & Joel Koh En Wei & Shu Lih Oh & N. Arunkumar & Enas. W. Abdulhay & Edward J. Ciaccio & U. Rajendra Acharya, 2020. "Autism Spectrum Disorder Diagnostic System Using HOS Bispectrum with EEG Signals," IJERPH, MDPI, vol. 17(3), pages 1-15, February.
    16. repec:cup:judgdm:v:17:y:2022:i:3:p:598-627 is not listed on IDEAS
    17. Claudio Conversano & Elise Dusseldorp, 2017. "Modeling Threshold Interaction Effects Through the Logistic Classification Trunk," Journal of Classification, Springer;The Classification Society, vol. 34(3), pages 399-426, October.
    18. Liu, Zhen Jia, 2015. "Estudo cross-country sobre os fatores determinantes da crise financeira bancária," RAE - Revista de Administração de Empresas, FGV-EAESP Escola de Administração de Empresas de São Paulo (Brazil), vol. 55(5), September.
    19. Gregory Gadzinski & Alessio Castello, 2022. "Combining white box models, black box machines and human interventions for interpretable decision strategies," Judgment and Decision Making, Society for Judgment and Decision Making, vol. 17(3), pages 598-627, May.
    20. Santos, Yan Antonino Costa & Rêgo, Leandro Chaves & Ospina, Raydonal, 2022. "Online handwritten signature verification via network analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 600(C).
    21. Luckert, M. K. & Wilson, J. & Adamowicz, V. & Cunningham, A. B., 2000. "SPECIAL SECTION: LAND USE OPTIONS IN DRY TROPICAL WOODLAND ECOSYSTEM IN ZIMBABWE: Household resource allocations in response to risks and returns in a communal area of western Zimbabwe," Ecological Economics, Elsevier, vol. 33(3), pages 383-394, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:3:y:2014:i:2:p:524-540:d:37343. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.