IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v14y2025i7p1320-d1684246.html
   My bibliography  Save this article

Climate Change Mitigation vs. Renewable Energy Consumption and Biomass Demand

Author

Listed:
  • Renata Dagiliūtė

    (Department of Environmental Sciences, Vytautas Magnus University, LT-44248 Kaunas, Lithuania)

  • Vaiva Kazanavičiūtė

    (Department of Environmental Sciences, Vytautas Magnus University, LT-44248 Kaunas, Lithuania)

Abstract

The land use, land-use change, and forestry (LULUCF) sector plays a crucial role in climate change mitigation; therefore, it is included in national and international climate change policies. However, renewable energy and bioeconomy development increase the demand for biomass for energy and material needs and challenge greenhouse gas (GHG) removal in LULUCF. Therefore, this study aims to analyze whether climate change mitigation and bioeconomy goals are compatible from an LULUCF perspective at the EU level. This study mainly covers the 2000–2020 period, looking at decoupling trends and LULUCF removal as well as estimating the substitution effect, which enables a broader view of the LULUCF GHG removal potential. The results reveal that decoupling is taking place at the EU level regarding economic growth and GHG, with a steady increase in renewables. The share of biomass in renewables is increasing at a slower pace, and the reduction in LULUCF GHG removal is proportionally lower compared to the pace of wood being harvested from forest land at the EU level. Still, biomass demand raises the pressure for LULUCF GHG removal, considering the sector itself is highly uncertain. Despite this, some possibilities to align climate and bioeconomy goals could remain, especially if the substitution effect is considered. Based on historical data, the estimated substitution effect is even higher (−367 mill. t CO 2 eq. on average in 2000–2020) than the sector’s removal (−300 mill. t CO 2 eq. on average in 2000–2020) and is dominated by material substitution (61%). Hence, LULUCF contributes to a reduction in GHG in other sectors, but it is still seldom acknowledged and not accounted for.

Suggested Citation

  • Renata Dagiliūtė & Vaiva Kazanavičiūtė, 2025. "Climate Change Mitigation vs. Renewable Energy Consumption and Biomass Demand," Land, MDPI, vol. 14(7), pages 1-16, June.
  • Handle: RePEc:gam:jlands:v:14:y:2025:i:7:p:1320-:d:1684246
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/14/7/1320/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/14/7/1320/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. de Wit, Marc & Londo, Marc & Faaij, André, 2011. "Productivity developments in European agriculture: Relations to and opportunities for biomass production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(5), pages 2397-2412, June.
    2. Guido Ceccherini & Gregory Duveiller & Giacomo Grassi & Guido Lemoine & Valerio Avitabile & Roberto Pilli & Alessandro Cescatti, 2020. "Abrupt increase in harvested forest area over Europe after 2015," Nature, Nature, vol. 583(7814), pages 72-77, July.
    3. Sorda, Giovanni & Banse, Martin & Kemfert, Claudia, 2010. "An overview of biofuel policies across the world," Energy Policy, Elsevier, vol. 38(11), pages 6977-6988, November.
    4. Gintautas Mozgeris & Vaiva Kazanavičiūtė & Daiva Juknelienė, 2021. "Does Aiming for Long-Term Non-Decreasing Flow of Timber Secure Carbon Accumulation: A Lithuanian Forestry Case," Sustainability, MDPI, vol. 13(5), pages 1-24, March.
    5. Jana Chovancova & Juraj Tej, 2020. "Decoupling economic growth from greenhouse gas emissions: the case of the energy sector in V4 countries," Equilibrium. Quarterly Journal of Economics and Economic Policy, Institute of Economic Research, vol. 15(2), pages 235-251, June.
    6. Kalt, Gerald & Höher, Martin & Lauk, Christian & Schipfer, Fabian & Kranzl, Lukas, 2016. "Carbon accounting of material substitution with biomass: Case studies for Austria investigated with IPCC default and alternative approaches," Environmental Science & Policy, Elsevier, vol. 64(C), pages 155-163.
    7. Gustavsson, L. & Holmberg, J. & Dornburg, V. & Sathre, R. & Eggers, T. & Mahapatra, K. & Marland, G., 2007. "Using biomass for climate change mitigation and oil use reduction," Energy Policy, Elsevier, vol. 35(11), pages 5671-5691, November.
    8. Sathre, Roger & Gustavsson, Leif, 2006. "Energy and carbon balances of wood cascade chains," Resources, Conservation & Recycling, Elsevier, vol. 47(4), pages 332-355.
    9. Jason Hickel & Giorgos Kallis, 2020. "Is Green Growth Possible?," New Political Economy, Taylor & Francis Journals, vol. 25(4), pages 469-486, June.
    10. Pau Brunet-Navarro & Hubert Jochheim & Bart Muys, 2017. "The effect of increasing lifespan and recycling rate on carbon storage in wood products from theoretical model to application for the European wood sector," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 22(8), pages 1193-1205, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bilgili, Faik & Koçak, Emrah & Bulut, Ümit & Kuşkaya, Sevda, 2017. "Can biomass energy be an efficient policy tool for sustainable development?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 830-845.
    2. Malkamäki, Arttu & Korhonen, Jaana E. & Berghäll, Sami & Berg Rustas, Carolina & Bernö, Hanna & Carreira, Ariane & D'Amato, Dalia & Dobrovolsky, Alexander & Giertliová, Blanka & Holmgren, Sara & Mark-, 2022. "Public perceptions of using forests to fuel the European bioeconomy: Findings from eight university cities," Forest Policy and Economics, Elsevier, vol. 140(C).
    3. Gray, Ian & Barral, Stephanie, 2021. "A (rapid) climate audit of economic sociology," economic sociology. perspectives and conversations, Max Planck Institute for the Study of Societies, vol. 22(3), pages 4-9.
    4. Bodisco, Timothy & Brown, Richard J., 2013. "Inter-cycle variability of in-cylinder pressure parameters in an ethanol fumigated common rail diesel engine," Energy, Elsevier, vol. 52(C), pages 55-65.
    5. Risa Arai & Martin Calisto Friant & Walter J. V. Vermeulen, 2024. "The Japanese Circular Economy and Sound Material-Cycle Society Policies: Discourse and Policy Analysis," Circular Economy and Sustainability, Springer, vol. 4(1), pages 619-650, March.
    6. Castro, Damaris & Bleys, Brent, 2023. "Do people think they have enough? A subjective income sufficiency assessment," Ecological Economics, Elsevier, vol. 205(C).
    7. Aleksandra Matuszewska-Janica & Dorota Żebrowska-Suchodolska & Urszula Ala-Karvia & Marta Hozer-Koćmiel, 2021. "Changes in Electricity Production from Renewable Energy Sources in the European Union Countries in 2005–2019," Energies, MDPI, vol. 14(19), pages 1-27, October.
    8. Yanying Hu & Xing Li & Yanwei Wang & Jiayu Zhang & Yiheng Duan & Xueqi Li, 2025. "Study on the Realistic Basis and Influencing Factors of China–Russia Forest Carbon Sink Project Cooperation," Sustainability, MDPI, vol. 17(6), pages 1-20, March.
    9. Batidzirai, B. & Smeets, E.M.W. & Faaij, A.P.C., 2012. "Harmonising bioenergy resource potentials—Methodological lessons from review of state of the art bioenergy potential assessments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(9), pages 6598-6630.
    10. Huwe, Vera & Steitz, Janek & Sigl-Glöckner, Philippa, 2022. "Kommunale Klimaschutzinvestitionen und deren Finanzierung: Eine Fallstudienanalyse," Papers 277902, Dezernat Zukunft - Institute for Macrofinance, Berlin.
    11. Crettez, Bertrand & Hayek, Naila & Zaccour, Georges, 2023. "When is frugality optimal?," Mathematical Social Sciences, Elsevier, vol. 125(C), pages 65-75.
    12. Kargbo, Hannah & Harris, Jonathan Stuart & Phan, Anh N., 2021. "“Drop-in” fuel production from biomass: Critical review on techno-economic feasibility and sustainability," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    13. Michael Barrowclough & L. Geyer, 2015. "Biofuel Policies: The Underground Limitation on Biofuels," International Advances in Economic Research, Springer;International Atlantic Economic Society, vol. 21(1), pages 55-65, March.
    14. Maiti, Moinak, 2022. "Does development in venture capital investments influence green growth?," Technological Forecasting and Social Change, Elsevier, vol. 182(C).
    15. Soratana, Kullapa & Harden, Cheyenne L. & Zaimes, George G. & Rasutis, Daina & Antaya, Claire L. & Khanna, Vikas & Landis, Amy E., 2014. "The role of sustainability and life cycle thinking in U.S. biofuels policies," Energy Policy, Elsevier, vol. 75(C), pages 316-326.
    16. Savin, Ivan & Drews, Stefan & van den Bergh, Jeroen, 2021. "Free associations of citizens and scientists with economic and green growth: A computational-linguistics analysis," Ecological Economics, Elsevier, vol. 180(C).
    17. Lei Wang & Sana Ullah & Muhammad Tayyab Sohail, 2024. "Exchange rate volatility and green growth in China: does nonlinearity matter?," Economic Change and Restructuring, Springer, vol. 57(6), pages 1-26, December.
    18. Engler, John-Oliver & Kretschmer, Max-Friedemann & Rathgens, Julius & Ament, Joe A. & Huth, Thomas & von Wehrden, Henrik, 2024. "15 years of degrowth research: A systematic review," Ecological Economics, Elsevier, vol. 218(C).
    19. Ofelia Andrea Valdés Rodríguez & Arturo Pérez Vázquez & Caupolicán Muñoz Gamboa, 2014. "Drivers and Consequences of the First Jatropha curcas Plantations in Mexico," Sustainability, MDPI, vol. 6(6), pages 1-15, June.
    20. Mariusz Czupich & Justyna Łapińska & Vojtěch Bartoš, 2022. "Environmental Sustainability Assessment of the European Union’s Capital Cities," IJERPH, MDPI, vol. 19(7), pages 1-18, April.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:14:y:2025:i:7:p:1320-:d:1684246. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.