IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v14y2025i6p1182-d1668303.html
   My bibliography  Save this article

A Review of Plant-Mediated and Fertilization-Induced Shifts in Ammonia Oxidizers: Implications for Nitrogen Cycling in Agroecosystems

Author

Listed:
  • Durga P. M. Chinthalapudi

    (Institute of Genomics, Biocomputing, and Biotechnology, Mississippi State University, Starkville, MS 39759, USA
    Department of Plant and Soil Sciences, Mississippi State University, Starkville, MS 39759, USA)

  • William Kingery

    (Department of Plant and Soil Sciences, Mississippi State University, Starkville, MS 39759, USA)

  • Shankar Ganapathi Shanmugam

    (Institute of Genomics, Biocomputing, and Biotechnology, Mississippi State University, Starkville, MS 39759, USA
    Department of Plant and Soil Sciences, Mississippi State University, Starkville, MS 39759, USA)

Abstract

Nitrogen (N) cycling in agroecosystems is a complex process regulated by both biological and agronomic factors, with ammonia-oxidizing archaea (AOA) and bacteria (AOB) playing pivotal roles in nitrification. Despite extensive fertilizer applications to achieve maximum crop yields, nitrogen use efficiency (NUE) remains less than ideal, with substantial losses contributing to environmental degradation. This review synthesizes current knowledge on plant-mediated and fertilization-induced shifts in ammonia-oxidizer communities and their implications on nitrogen cycling. We highlight the differential ecological niches of AOA and AOB, emphasizing their responses to plant community composition, root exudates, and allelopathic compounds. Fertilization regimes of inorganic nitrogen inputs and biological nitrification inhibition (BNI) are examined in the context of microbial adaptation and ammonia tolerance. Our review highlights the need for integrated nitrogen management strategies comprising optimized fertilization timing, nitrification inhibitors, and plant–microbe interactions in order to optimize NUE and mitigate nitrogen losses. Future research directions must involve applications of metagenomic and isotopic tracing techniques to unravel the mechanistic AOA and AOB pathways that are involved in regulating these dynamics. An improved understanding of these microbial interactions will inform the creation of more sustainable agricultural systems that aim to optimize nitrogen retention and reduce environmental footprint.

Suggested Citation

  • Durga P. M. Chinthalapudi & William Kingery & Shankar Ganapathi Shanmugam, 2025. "A Review of Plant-Mediated and Fertilization-Induced Shifts in Ammonia Oxidizers: Implications for Nitrogen Cycling in Agroecosystems," Land, MDPI, vol. 14(6), pages 1-25, May.
  • Handle: RePEc:gam:jlands:v:14:y:2025:i:6:p:1182-:d:1668303
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/14/6/1182/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/14/6/1182/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. S. Leininger & T. Urich & M. Schloter & L. Schwark & J. Qi & G. W. Nicol & J. I. Prosser & S. C. Schuster & C. Schleper, 2006. "Archaea predominate among ammonia-oxidizing prokaryotes in soils," Nature, Nature, vol. 442(7104), pages 806-809, August.
    2. Ian J. Wright & Peter B. Reich & Mark Westoby & David D. Ackerly & Zdravko Baruch & Frans Bongers & Jeannine Cavender-Bares & Terry Chapin & Johannes H. C. Cornelissen & Matthias Diemer & Jaume Flexas, 2004. "The worldwide leaf economics spectrum," Nature, Nature, vol. 428(6985), pages 821-827, April.
    3. Holger Daims & Elena V. Lebedeva & Petra Pjevac & Ping Han & Craig Herbold & Mads Albertsen & Nico Jehmlich & Marton Palatinszky & Julia Vierheilig & Alexandr Bulaev & Rasmus H. Kirkegaard & Martin vo, 2015. "Complete nitrification by Nitrospira bacteria," Nature, Nature, vol. 528(7583), pages 504-509, December.
    4. Xin Zhang & Eric A. Davidson & Denise L. Mauzerall & Timothy D. Searchinger & Patrice Dumas & Ye Shen, 2015. "Managing nitrogen for sustainable development," Nature, Nature, vol. 528(7580), pages 51-59, December.
    5. Huai Shi & Guohong Liu & Qianqian Chen, 2024. "Research Hotspots and Trends of Nitrification Inhibitors: A Bibliometric Review from 2004–2023," Sustainability, MDPI, vol. 16(10), pages 1-21, May.
    6. S. Hu & F. S. Chapin & M. K. Firestone & C. B. Field & N. R. Chiariello, 2001. "Nitrogen limitation of microbial decomposition in a grassland under elevated CO2," Nature, Nature, vol. 409(6817), pages 188-191, January.
    7. Willm Martens-Habbena & Paul M. Berube & Hidetoshi Urakawa & José R. de la Torre & David A. Stahl, 2009. "Ammonia oxidation kinetics determine niche separation of nitrifying Archaea and Bacteria," Nature, Nature, vol. 461(7266), pages 976-979, October.
    8. Maartje A. H. J. van Kessel & Daan R. Speth & Mads Albertsen & Per H. Nielsen & Huub J. M. Op den Camp & Boran Kartal & Mike S. M. Jetten & Sebastian Lücker, 2015. "Complete nitrification by a single microorganism," Nature, Nature, vol. 528(7583), pages 555-559, December.
    9. K. Dimitri Kits & Christopher J. Sedlacek & Elena V. Lebedeva & Ping Han & Alexandr Bulaev & Petra Pjevac & Anne Daebeler & Stefano Romano & Mads Albertsen & Lisa Y. Stein & Holger Daims & Michael Wag, 2017. "Kinetic analysis of a complete nitrifier reveals an oligotrophic lifestyle," Nature, Nature, vol. 549(7671), pages 269-272, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sharif Hossain & Christopher W. K. Chow & David Cook & Emma Sawade & Guna A. Hewa, 2022. "Review of Nitrification Monitoring and Control Strategies in Drinking Water System," IJERPH, MDPI, vol. 19(7), pages 1-31, March.
    2. He, Yanying & Li, Yiming & Li, Xuecheng & Liu, Yingrui & Wang, Yufen & Guo, Haixiao & Hou, Jiaqi & Zhu, Tingting & Liu, Yiwen, 2023. "Net-zero greenhouse gas emission from wastewater treatment: Mechanisms, opportunities and perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 184(C).
    3. Qiong Wan & Qingji Han & Hailin Luo & Tao He & Feng Xue & Zihuizhong Ye & Chen Chen & Shan Huang, 2020. "Ceramsite Facilitated Microbial Degradation of Pollutants in Domestic Wastewater," IJERPH, MDPI, vol. 17(13), pages 1-13, June.
    4. Hannaford, Naomi E. & Heaps, Sarah E. & Nye, Tom M.W. & Curtis, Thomas P. & Allen, Ben & Golightly, Andrew & Wilkinson, Darren J., 2023. "A sparse Bayesian hierarchical vector autoregressive model for microbial dynamics in a wastewater treatment plant," Computational Statistics & Data Analysis, Elsevier, vol. 179(C).
    5. Xingjia He & Sen Li & Fengzhi Wu, 2021. "Responses of Ammonia-Oxidizing Microorganisms to Intercropping Systems in Different Seasons," Agriculture, MDPI, vol. 11(3), pages 1-17, February.
    6. Jianfeng Ning & Yuji Arai & Jian Shen & Ronghui Wang & Shaoying Ai, 2021. "Effects of Phosphorus on Nitrification Process in a Fertile Soil Amended with Urea," Agriculture, MDPI, vol. 11(6), pages 1-12, June.
    7. Lin, L. & Norman, J.S. & Barrett, J.E., 2017. "Ammonia-uptake kinetics and domain-level contributions of bacteria and archaea to nitrification in temperate forest soils," Ecological Modelling, Elsevier, vol. 362(C), pages 111-119.
    8. Huai Shi & Guohong Liu & Qianqian Chen, 2024. "Research Hotspots and Trends of Nitrification Inhibitors: A Bibliometric Review from 2004–2023," Sustainability, MDPI, vol. 16(10), pages 1-21, May.
    9. Nkulu Rolly Kabange & Youngho Kwon & So-Myeong Lee & Ju-Won Kang & Jin-Kyung Cha & Hyeonjin Park & Gamenyah Daniel Dzorkpe & Dongjin Shin & Ki-Won Oh & Jong-Hee Lee, 2023. "Mitigating Greenhouse Gas Emissions from Crop Production and Management Practices, and Livestock: A Review," Sustainability, MDPI, vol. 15(22), pages 1-41, November.
    10. Shengbo Gu & Leibin Liu & Xiaojie Zhuang & Jinsheng Qiu & Zhi Zhou, 2022. "Enhanced Nitrogen Removal in a Pilot-Scale Anoxic/Aerobic (A/O) Process Coupling PE Carrier and Nitrifying Bacteria PE Carrier: Performance and Microbial Shift," Sustainability, MDPI, vol. 14(12), pages 1-20, June.
    11. Nagendranatha Reddy, C. & Venkata Mohan, S., 2016. "Integrated bio-electrogenic process for bioelectricity production and cathodic nutrient recovery from azo dye wastewater," Renewable Energy, Elsevier, vol. 98(C), pages 188-196.
    12. Massimo Zilio & Silvia Motta & Fulvia Tambone & Barbara Scaglia & Gabriele Boccasile & Andrea Squartini & Fabrizio Adani, 2020. "The distribution of functional N-cycle related genes and ammonia and nitrate nitrogen in soil profiles fertilized with mineral and organic N fertilizer," PLOS ONE, Public Library of Science, vol. 15(6), pages 1-19, June.
    13. Alexander C. Abajian & Tamma Carleton & Kyle C. Meng & Olivier Deschênes, 2025. "Quantifying the global climate feedback from energy-based adaptation," Nature Communications, Nature, vol. 16(1), pages 1-15, December.
    14. Paul L. G. Vlek & Asia Khamzina & Hossein Azadi & Anik Bhaduri & Luna Bharati & Ademola Braimoh & Christopher Martius & Terry Sunderland & Fatemeh Taheri, 2017. "Trade-Offs in Multi-Purpose Land Use under Land Degradation," Sustainability, MDPI, vol. 9(12), pages 1-19, November.
    15. Kehinde Abraham Odelade & Olubukola Oluranti Babalola, 2019. "Bacteria, Fungi and Archaea Domains in Rhizospheric Soil and Their Effects in Enhancing Agricultural Productivity," IJERPH, MDPI, vol. 16(20), pages 1-19, October.
    16. Xin Nie & Jianxian Wu & Han Wang & Weijuan Li & Chengdao Huang & Lihua Li, 2022. "Contributing to carbon peak: Estimating the causal impact of eco‐industrial parks on low‐carbon development in China," Journal of Industrial Ecology, Yale University, vol. 26(4), pages 1578-1593, August.
    17. Dániel Fróna & János Szenderák & Mónika Harangi-Rákos, 2019. "The Challenge of Feeding the World," Sustainability, MDPI, vol. 11(20), pages 1-18, October.
    18. Otavio Ananias Pereira da Silva & Dayane Bortoloto da Silva & Marcelo Carvalho Minhoto Teixeira-Filho & Tays Batista Silva & Cid Naudi Silva Campos & Fabio Henrique Rojo Baio & Gileno Brito de Azevedo, 2023. "Macro- and Micronutrient Contents and Their Relationship with Growth in Six Eucalyptus Species," Sustainability, MDPI, vol. 15(22), pages 1-12, November.
    19. Jiuliang Xu & Liangquan Wu & Bingxin Tong & Jiaxu Yin & Zican Huang & Wei Li & Xuexian Li, 2021. "Magnesium Supplementation Alters Leaf Metabolic Pathways for Higher Flavor Quality of Oolong Tea," Agriculture, MDPI, vol. 11(2), pages 1-12, February.
    20. Agnieszka Sobolewska & Marcin Bukowski, 2025. "Consumption of Nitrogen Fertilizers in the EU—External Costs of Their Production by Country of Application," Agriculture, MDPI, vol. 15(3), pages 1-18, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:14:y:2025:i:6:p:1182-:d:1668303. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.