IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v11y2021i3p195-d507196.html
   My bibliography  Save this article

Responses of Ammonia-Oxidizing Microorganisms to Intercropping Systems in Different Seasons

Author

Listed:
  • Xingjia He

    (Department of Horticulture, Northeast Agricultural University, Harbin 150030, China
    Key Laboratory of Cold Area Vegetable Biology, Northeast Agricultural University, Harbin 150030, China
    Ministry of Agriculture Key Laboratory of Biology and Germplasm Enhancement of Horticulture Crops in Northeast China, Northeast Agricultural University, Harbin 150030, China)

  • Sen Li

    (Department of Horticulture, Northeast Agricultural University, Harbin 150030, China
    Key Laboratory of Cold Area Vegetable Biology, Northeast Agricultural University, Harbin 150030, China
    Ministry of Agriculture Key Laboratory of Biology and Germplasm Enhancement of Horticulture Crops in Northeast China, Northeast Agricultural University, Harbin 150030, China)

  • Fengzhi Wu

    (Department of Horticulture, Northeast Agricultural University, Harbin 150030, China
    Key Laboratory of Cold Area Vegetable Biology, Northeast Agricultural University, Harbin 150030, China
    Ministry of Agriculture Key Laboratory of Biology and Germplasm Enhancement of Horticulture Crops in Northeast China, Northeast Agricultural University, Harbin 150030, China)

Abstract

Intercropping plays an essential role in agricultural production, impacting the soil’s physical and chemical properties and microbial communities. However, the responses of ammonia-oxidizing microorganisms in the continuous-cropping soil to different intercropping systems in different growing seasons are still insufficiently studied. Here, we investigated the effects of seven intercropping systems (alfalfa ( Medicago sativa L.)/cucumber, trifolium ( Trifolium repens L.)/cucumber, wheat ( Triticum aestivum L.)/cucumber, rye ( Secale cereale L.)/cucumber, chrysanthemum ( Chrysanthemum coronrium L.)/cucumber, rape ( Brassica campestris L.)/cucumber, mustard ( Brassica juncea L.)/cucumber) on soil physical and chemical properties, potential nitrification rate (PNR), soil ammonia-oxidizing archaea (AOA), and ammonia-oxidizing bacteria (AOB) communities in the greenhouse in spring and autumn. The results showed that, compared with cucumber monoculture, intercropping increased the soil NH 4 + -N and NO 3 − -N. The chrysanthemum–cucumber, rape–cucumber, and mustard–cucumber treatments increased soil PNR. Intercropping increased the AOA and AOB abundances in two seasons, especially in rape–cucumber, wheat–cucumber, chrysanthemum–cucumber, and trifolium–cucumber treatments. The ratio of AOA and AOB decreased with seasonal variation. The wheat–cucumber and rape–cucumber treatments increased soil AOA community diversity. Seasonal variation had a significant effect on the relative abundance of the AOB community. Nonmetric multidimensional scaling analysis showed that the AOA and AOB community structures were obviously different from spring to autumn. Redundancy analysis showed that the AOA community was significantly regulated by moisture, NO 3 − –N, and available potassium (AK), while the AOB community was significantly regulated by moisture, available phosphorus (AP), AK, NO 3 − -N, and pH. Network analysis showed that the co-occurrence relationship and complexity of AOA and AOB communities were different in two growing seasons. The AOB community may play a critical role in ammonia oxidation in autumn. Taken together, intercropping improved soil physicochemical state, increased soil PNR and significantly altered soil AOA and AOB communities. Seasonal variation significantly altered the AOA and AOB communities’ structure and interaction between them. The effect of seasonal variation on AOA and AOB communities was greater than intercropping.

Suggested Citation

  • Xingjia He & Sen Li & Fengzhi Wu, 2021. "Responses of Ammonia-Oxidizing Microorganisms to Intercropping Systems in Different Seasons," Agriculture, MDPI, vol. 11(3), pages 1-17, February.
  • Handle: RePEc:gam:jagris:v:11:y:2021:i:3:p:195-:d:507196
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/11/3/195/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/11/3/195/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. S. Leininger & T. Urich & M. Schloter & L. Schwark & J. Qi & G. W. Nicol & J. I. Prosser & S. C. Schuster & C. Schleper, 2006. "Archaea predominate among ammonia-oxidizing prokaryotes in soils," Nature, Nature, vol. 442(7104), pages 806-809, August.
    2. Maartje A. H. J. van Kessel & Daan R. Speth & Mads Albertsen & Per H. Nielsen & Huub J. M. Op den Camp & Boran Kartal & Mike S. M. Jetten & Sebastian Lücker, 2015. "Complete nitrification by a single microorganism," Nature, Nature, vol. 528(7583), pages 555-559, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jianfeng Ning & Yuji Arai & Jian Shen & Ronghui Wang & Shaoying Ai, 2021. "Effects of Phosphorus on Nitrification Process in a Fertile Soil Amended with Urea," Agriculture, MDPI, vol. 11(6), pages 1-12, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kehinde Abraham Odelade & Olubukola Oluranti Babalola, 2019. "Bacteria, Fungi and Archaea Domains in Rhizospheric Soil and Their Effects in Enhancing Agricultural Productivity," IJERPH, MDPI, vol. 16(20), pages 1-19, October.
    2. He, Yanying & Li, Yiming & Li, Xuecheng & Liu, Yingrui & Wang, Yufen & Guo, Haixiao & Hou, Jiaqi & Zhu, Tingting & Liu, Yiwen, 2023. "Net-zero greenhouse gas emission from wastewater treatment: Mechanisms, opportunities and perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 184(C).
    3. X.X. Dong & L.L. Zhang & Z.J. Wu & H.W. Zhang & P. Gong, 2013. "The response of nitrifier, N-fixer and denitrifier gene copy numbers to the nitrification inhibitor 3,4-dimethylpyrazole phosphate," Plant, Soil and Environment, Czech Academy of Agricultural Sciences, vol. 59(9), pages 398-403.
    4. Qiong Wan & Qingji Han & Hailin Luo & Tao He & Feng Xue & Zihuizhong Ye & Chen Chen & Shan Huang, 2020. "Ceramsite Facilitated Microbial Degradation of Pollutants in Domestic Wastewater," IJERPH, MDPI, vol. 17(13), pages 1-13, June.
    5. Pietro Denisi & Nicola Biondo & Giuseppe Bombino & Adele Folino & Demetrio Antonio Zema & Santo Marcello Zimbone, 2021. "A Combined System Using Lagoons and Constructed Wetlands for Swine Wastewater Treatment," Sustainability, MDPI, vol. 13(22), pages 1-14, November.
    6. Hannaford, Naomi E. & Heaps, Sarah E. & Nye, Tom M.W. & Curtis, Thomas P. & Allen, Ben & Golightly, Andrew & Wilkinson, Darren J., 2023. "A sparse Bayesian hierarchical vector autoregressive model for microbial dynamics in a wastewater treatment plant," Computational Statistics & Data Analysis, Elsevier, vol. 179(C).
    7. Mohammad Bahram & Mikk Espenberg & Jaan Pärn & Laura Lehtovirta-Morley & Sten Anslan & Kuno Kasak & Urmas Kõljalg & Jaan Liira & Martin Maddison & Mari Moora & Ülo Niinemets & Maarja Öpik & Meelis Pär, 2022. "Structure and function of the soil microbiome underlying N2O emissions from global wetlands," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    8. Liron Friedman & Kartik Chandran & Dror Avisar & Edris Taher & Amanda Kirchmaier-Hurpia & Hadas Mamane, 2022. "Accelerating Microbial Activity of Soil Aquifer Treatment by Hydrogen Peroxide," Energies, MDPI, vol. 15(11), pages 1-14, May.
    9. Pok Man Leung & Rhys Grinter & Eve Tudor-Matthew & James P. Lingford & Luis Jimenez & Han-Chung Lee & Michael Milton & Iresha Hanchapola & Erwin Tanuwidjaya & Ashleigh Kropp & Hanna A. Peach & Carlo R, 2024. "Trace gas oxidation sustains energy needs of a thermophilic archaeon at suboptimal temperatures," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    10. M. E. Marushchak & J. Kerttula & K. Diáková & A. Faguet & J. Gil & G. Grosse & C. Knoblauch & N. Lashchinskiy & P. J. Martikainen & A. Morgenstern & M. Nykamb & J. G. Ronkainen & H. M. P. Siljanen & L, 2021. "Thawing Yedoma permafrost is a neglected nitrous oxide source," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    11. Dhafer Alsalah & Nada Al-Jassim & Kenda Timraz & Pei-Ying Hong, 2015. "Assessing the Groundwater Quality at a Saudi Arabian Agricultural Site and the Occurrence of Opportunistic Pathogens on Irrigated Food Produce," IJERPH, MDPI, vol. 12(10), pages 1-21, October.
    12. Sharif Hossain & Christopher W. K. Chow & David Cook & Emma Sawade & Guna A. Hewa, 2022. "Review of Nitrification Monitoring and Control Strategies in Drinking Water System," IJERPH, MDPI, vol. 19(7), pages 1-31, March.
    13. Alvarez-Yela, Astrid Catalina & Alvarez-Silva, María Camila & Restrepo, Silvia & Husserl, Johana & Zambrano, María Mercedes & Danies, Giovanna & Gómez, Jorge M. & González Barrios, Andrés Fernando, 2017. "Influence of agricultural activities in the structure and metabolic functionality of paramo soil samples in Colombia studied using a metagenomics analysis in dynamic state," Ecological Modelling, Elsevier, vol. 351(C), pages 63-76.
    14. Jianfeng Ning & Yuji Arai & Jian Shen & Ronghui Wang & Shaoying Ai, 2021. "Effects of Phosphorus on Nitrification Process in a Fertile Soil Amended with Urea," Agriculture, MDPI, vol. 11(6), pages 1-12, June.
    15. Leiashvily, Paata, 2022. "The Economy as a Complex System of Economic Actions: In Search of a New Paradigm," MPRA Paper 116226, University Library of Munich, Germany.
    16. Nkulu Rolly Kabange & Youngho Kwon & So-Myeong Lee & Ju-Won Kang & Jin-Kyung Cha & Hyeonjin Park & Gamenyah Daniel Dzorkpe & Dongjin Shin & Ki-Won Oh & Jong-Hee Lee, 2023. "Mitigating Greenhouse Gas Emissions from Crop Production and Management Practices, and Livestock: A Review," Sustainability, MDPI, vol. 15(22), pages 1-41, November.
    17. R. Michael Lehman & Cynthia A. Cambardella & Diane E. Stott & Veronica Acosta-Martinez & Daniel K. Manter & Jeffrey S. Buyer & Jude E. Maul & Jeffrey L. Smith & Harold P. Collins & Jonathan J. Halvors, 2015. "Understanding and Enhancing Soil Biological Health: The Solution for Reversing Soil Degradation," Sustainability, MDPI, vol. 7(1), pages 1-40, January.
    18. Shengbo Gu & Leibin Liu & Xiaojie Zhuang & Jinsheng Qiu & Zhi Zhou, 2022. "Enhanced Nitrogen Removal in a Pilot-Scale Anoxic/Aerobic (A/O) Process Coupling PE Carrier and Nitrifying Bacteria PE Carrier: Performance and Microbial Shift," Sustainability, MDPI, vol. 14(12), pages 1-20, June.
    19. Jian Zhang & Olusanya A. Olatunji & Kaiwen Pan & Xianjun Jiang & Yao Meng & Jianjun Li & Jiabao Li & Si Shen & Dalu Guo & Hongyan Luo, 2020. "Ammonia- and Methane-Oxidizing Bacteria: The Abundance, Niches and Compositional Differences for Diverse Soil Layers in Three Flooded Paddy Fields," Sustainability, MDPI, vol. 12(3), pages 1-24, January.
    20. Sharjeel Waqas & Muhammad Roil Bilad & Nurul Huda & Noorfidza Yub Harun & Nik Abdul Hadi Md Nordin & Norazanita Shamsuddin & Yusuf Wibisono & Asim Laeeq Khan & Jumardi Roslan, 2021. "Membrane Filtration as Post-Treatment of Rotating Biological Contactor for Wastewater Treatment," Sustainability, MDPI, vol. 13(13), pages 1-16, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:11:y:2021:i:3:p:195-:d:507196. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.