IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v14y2025i4p771-d1627804.html
   My bibliography  Save this article

Identification of Key Drivers of Land Surface Temperature Within the Local Climate Zone Framework

Author

Listed:
  • Yuan Feng

    (State Key Laboratory of Efficient Production of Forest Resources, The Key Laboratory for Silviculture and Conservation of Ministry of Education, Key Laboratory for Silviculture and Forest Ecosystem of State Forestry and Grassland Administration, Beijing Forestry University, Beijing 100083, China
    International Union Laboratory of Landscape Architecture, College of Landscape Architecture and Art, Henan Agricultural University, Zhengzhou 450003, China
    These authors contributed equally to this work.)

  • Guangzhao Wu

    (State Key Laboratory of Efficient Production of Forest Resources, The Key Laboratory for Silviculture and Conservation of Ministry of Education, Key Laboratory for Silviculture and Forest Ecosystem of State Forestry and Grassland Administration, Beijing Forestry University, Beijing 100083, China
    These authors contributed equally to this work.)

  • Shidong Ge

    (International Union Laboratory of Landscape Architecture, College of Landscape Architecture and Art, Henan Agricultural University, Zhengzhou 450003, China)

  • Fei Feng

    (State Key Laboratory of Efficient Production of Forest Resources, The Key Laboratory for Silviculture and Conservation of Ministry of Education, Key Laboratory for Silviculture and Forest Ecosystem of State Forestry and Grassland Administration, Beijing Forestry University, Beijing 100083, China)

  • Pin Li

    (State Key Laboratory of Efficient Production of Forest Resources, The Key Laboratory for Silviculture and Conservation of Ministry of Education, Key Laboratory for Silviculture and Forest Ecosystem of State Forestry and Grassland Administration, Beijing Forestry University, Beijing 100083, China)

Abstract

The surface urban heat island (SUHI) effect, driven by human activities and land cover changes, leads to elevated temperatures in urban areas, posing challenges to sustainability, public health, and environmental quality. While SUHI drivers at large scales are well-studied, finer-scale thermal variations remain underexplored. This study employed the Local Climate Zones (LCZs) framework to analyze land surface temperature (LST) dynamics in Zhengzhou, China. Using 2022 mean LST data derived from a single-channel algorithm, combined with field surveys and remote sensing techniques, we examined 30 potential driving factors spanning natural and anthropogenic conditions. Results show that built-type LCZs had higher average LSTs (31.10 °C) compared with non-built LCZs (28.91 °C), with non-built LCZs showing greater variability (10.48 °C vs. 6.76 °C). Among five major driving factor categories, landscape pattern indices dominated built-type LCZs, accounting for 44.5% of LST variation, while Tasseled Cap Transformation indices, particularly brightness, drove 42.8% of the variation in non-built-type LCZs. Partial dependence analysis revealed that wetness and landscape fragmentation reduce LST in built-type LCZs, whereas GDP, imperviousness, and landscape cohesion increase it. In non-built LCZs, population density, connectivity, and brightness raise LST, while wetness and atmospheric dryness provide cooling effects. These findings highlight the need for LCZ-specific SUHI mitigation strategies. Built-type LCZs require urban form optimization, enhanced landscape connectivity, and expanded green infrastructure to reduce heat accumulation. Non-built LCZs benefit from maintaining soil moisture, addressing atmospheric dryness, and optimizing vegetation configurations. This study provides actionable insights for sustainable thermal environment management and urban resilience.

Suggested Citation

  • Yuan Feng & Guangzhao Wu & Shidong Ge & Fei Feng & Pin Li, 2025. "Identification of Key Drivers of Land Surface Temperature Within the Local Climate Zone Framework," Land, MDPI, vol. 14(4), pages 1-25, April.
  • Handle: RePEc:gam:jlands:v:14:y:2025:i:4:p:771-:d:1627804
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/14/4/771/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/14/4/771/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yuan Feng & Kaihua Zhang & Ang Li & Yangyang Zhang & Kun Wang & Nan Guo & Ho Yi Wan & Xiaoyang Tan & Nalin Dong & Xin Xu & Ruizhen He & Bing Wang & Long Fan & Shidong Ge & Peihao Song, 2024. "Spatial and Seasonal Variation and the Driving Mechanism of the Thermal Effects of Urban Park Green Spaces in Zhengzhou, China," Land, MDPI, vol. 13(9), pages 1-25, September.
    2. Lei Zhao & Xuhui Lee & Ronald B. Smith & Keith Oleson, 2014. "Strong contributions of local background climate to urban heat islands," Nature, Nature, vol. 511(7508), pages 216-219, July.
    3. Lingfei Shi & Feng Ling & Giles M. Foody & Zhen Yang & Xixi Liu & Yun Du, 2021. "Seasonal SUHI Analysis Using Local Climate Zone Classification: A Case Study of Wuhan, China," IJERPH, MDPI, vol. 18(14), pages 1-13, July.
    4. Fei Tao & Yuchen Hu & Guoan Tang & Tong Zhou, 2021. "Long-Term Evolution of the SUHI Footprint and Urban Expansion Based on a Temperature Attenuation Curve in the Yangtze River Delta Urban Agglomeration," Sustainability, MDPI, vol. 13(15), pages 1-17, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bing Li & Zhifeng Liu & Ying Nan & Shengnan Li & Yanmin Yang, 2018. "Comparative Analysis of Urban Heat Island Intensities in Chinese, Russian, and DPRK Regions across the Transnational Urban Agglomeration of the Tumen River in Northeast Asia," Sustainability, MDPI, vol. 10(8), pages 1-16, July.
    2. Giuseppina A. Giorgio & Maria Ragosta & Vito Telesca, 2017. "Climate Variability and Industrial-Suburban Heat Environment in a Mediterranean Area," Sustainability, MDPI, vol. 9(5), pages 1-10, May.
    3. David Hidalgo García & Julián Arco Díaz & Adelaida Martín Martín & Emilio Gómez Cobos, 2022. "Spatiotemporal Analysis of Urban Thermal Effects Caused by Heat Waves through Remote Sensing," Sustainability, MDPI, vol. 14(19), pages 1-24, September.
    4. Li, Ruibin & Zhao, Yi & Chang, Min & Zeng, Fanxing & Wu, Yan & Wang, Liangzhu (Leon) & Niu, Jianlei & Shi, Xing & Gao, Naiping, 2024. "Numerical simulation methods of tree effects on microclimate: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 205(C).
    5. Shaojing Jiang, 2023. "Compound Heat Vulnerability in the Record-Breaking Hot Summer of 2022 over the Yangtze River Delta Region," IJERPH, MDPI, vol. 20(8), pages 1-15, April.
    6. SangHyeok Lee & Donghyun Kim, 2022. "Multidisciplinary Understanding of the Urban Heating Problem and Mitigation: A Conceptual Framework for Urban Planning," IJERPH, MDPI, vol. 19(16), pages 1-15, August.
    7. Olivia J. Keenan & Aalayna R. Green & Alexander R. Young & Sarah R. Young & Daniel S. W. Katz & David L. Miller & Wenna Xi & Fiona Lo & Evelyn Ortiz & Glenn McMillan & Curtis L. Archer & Arnab K. Ghos, 2025. "Exploring Community Co-Creation in Tree Planting and Heat-Related Health Interventions: A Qualitative Study," IJERPH, MDPI, vol. 22(6), pages 1-23, June.
    8. Liang, Rui & Wang, Po-Hsun, 2024. "Enhancing energy efficiency in buildings, optimization method and building management systems application for lower CO2 emissions," Energy, Elsevier, vol. 313(C).
    9. Yuxiang Li & Jens-Christian Svenning & Weiqi Zhou & Kai Zhu & Jesse F. Abrams & Timothy M. Lenton & William J. Ripple & Zhaowu Yu & Shuqing N. Teng & Robert R. Dunn & Chi Xu, 2024. "Green spaces provide substantial but unequal urban cooling globally," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    10. Soumya Satyakanta Sethi & V. Vinoj & Partha Pratim Gogoi & Kiranmayi Landu & Debadatta Swain & U. C. Mohanty, 2024. "Spatio-temporal evolution of surface urban heat island over Bhubaneswar-Cuttack twin city: a rapidly growing tropical urban complex in Eastern India," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 26(6), pages 15381-15402, June.
    11. Rituraj Neog & Shukla Acharjee & Jiten Hazarika, 2021. "Spatiotemporal analysis of road surface temperature (RST) and building wall temperature (BWT) and its relation to the traffic volume at Jorhat urban environment, India," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(7), pages 10080-10092, July.
    12. Xiaxuan He & Qifeng Yuan & Yinghong Qin & Junwen Lu & Gang Li, 2024. "Analysis of Surface Urban Heat Island in the Guangzhou-Foshan Metropolitan Area Based on Local Climate Zones," Land, MDPI, vol. 13(10), pages 1-34, October.
    13. Fei Huo & Li Xu & Yanping Li & James S. Famiglietti & Zhenhua Li & Yuya Kajikawa & Fei Chen, 2021. "Using big data analytics to synthesize research domains and identify emerging fields in urban climatology," Wiley Interdisciplinary Reviews: Climate Change, John Wiley & Sons, vol. 12(1), January.
    14. Molitor, David & White, Corey, 2024. "Do cities mitigate or exacerbate environmental damages to health?," Regional Science and Urban Economics, Elsevier, vol. 107(C).
    15. repec:plo:pone00:0127277 is not listed on IDEAS
    16. Aerzuna Abulimiti & Yongqiang Liu & Lianmei Yang & Abuduwaili Abulikemu & Yusuyunjiang Mamitimin & Shuai Yuan & Reifat Enwer & Zhiyi Li & Abidan Abuduaini & Zulipina Kadier, 2024. "Urbanization Effect on Changes in Extreme Climate Events in Urumqi, China, from 1976 to 2018," Land, MDPI, vol. 13(3), pages 1-25, February.
    17. Mahshid Ghanbari & Mazdak Arabi & Matei Georgescu & Ashley M. Broadbent, 2023. "The role of climate change and urban development on compound dry-hot extremes across US cities," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    18. Zheng, Zhonghua & Zhao, Lei & Oleson, Keith W., 2020. "Large model parameter and structural uncertainties in global projections of urban heat waves," Earth Arxiv f5pwa, Center for Open Science.
    19. Ze Liang & Yueyao Wang & Jiao Huang & Feili Wei & Shuyao Wu & Jiashu Shen & Fuyue Sun & Shuangcheng Li, 2020. "Seasonal and Diurnal Variations in the Relationships between Urban Form and the Urban Heat Island Effect," Energies, MDPI, vol. 13(22), pages 1-19, November.
    20. Marie De Groeve & Eda Kale & Scott Allan Orr & Tim De Kock, 2023. "Preliminary Experimental Laboratory Methods to Analyse the Insulation Capacity of Vertical Greening on Temperature and Relative Humidity," Sustainability, MDPI, vol. 15(15), pages 1-13, July.
    21. Cristina Andrade & André Fonseca & João A. Santos, 2023. "Climate Change Trends for the Urban Heat Island Intensities in Two Major Portuguese Cities," Sustainability, MDPI, vol. 15(5), pages 1-20, February.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:14:y:2025:i:4:p:771-:d:1627804. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.