IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v14y2025i3p535-d1605178.html
   My bibliography  Save this article

Soil Organic Carbon Turnover Following Afforestation of a Savanna Revealed by Particle-Size Fractionation and Natural 13 C Measurements in Ivory Coast

Author

Listed:
  • Thierry Desjardins

    (Institut d’Écologie et des Sciences de l’Environnement de Paris, Sorbonne Université, CNRS–INRA–UPEC–IRD—Université Paris Cité, Centre IRD France Nord, 75005 Paris, France)

  • Thierry Henry Des Tureaux

    (Institut d’Écologie et des Sciences de l’Environnement de Paris, Sorbonne Université, CNRS–INRA–UPEC–IRD—Université Paris Cité, Laboratoire d’Ecologie et du Développement Durable, Université Nangui Abrogoua, 02 B.P. 801 Abidjan, Côte d’Ivoire)

  • Magloire Mandeng-Yogo

    (Laboratoire d’Océanographie et du Climat, Expérimentation et Approche Numérique, IPSL, Sorbonne Université, CNRS-IRD-MNHN, Centre IRD France Nord, 4 Place Jussieu, 75005 Paris, France)

  • Fethiye Cetin

    (Laboratoire d’Océanographie et du Climat, Expérimentation et Approche Numérique, IPSL, Sorbonne Université, CNRS-IRD-MNHN, Centre IRD France Nord, 4 Place Jussieu, 75005 Paris, France)

Abstract

Soil organic matter plays a crucial role in the global carbon cycle, yet the magnitude and direction of changes in soil carbon content following vegetation shifts in the tropics remain highly debated. Most studies have focused on short-term changes, typically spanning only a few months or years. In this study, we investigated the medium-term dynamics of organic matter at a site where savanna, protected from fire for 58 years, has gradually transitioned to woodland vegetation. Natural 13 C abundance analysis combined with particle-size fractionation was used to characterize the changes in SOM over time. While carbon content remains relatively stable, δ 13 C exhibits a distinct shift, particularly in the surface layers, reflecting the gradual replacement of savanna-derived carbon with tree-derived carbon. All fractions were influenced by the inputs and outputs of carbon from both savanna and tree sources. In the coarse fractions, most of the carbon originates from trees; however, a significant proportion of savanna-derived carbon (ranging from 10% to 40%, depending on the fraction, depth, and patch) persists, likely in the form of black carbon. In the fine fractions, nearly half of the carbon (40% to 50%) remains derived from the savanna, highlighting the greater stability of organic matter that is physically bound to clays and protected within microaggregates.

Suggested Citation

  • Thierry Desjardins & Thierry Henry Des Tureaux & Magloire Mandeng-Yogo & Fethiye Cetin, 2025. "Soil Organic Carbon Turnover Following Afforestation of a Savanna Revealed by Particle-Size Fractionation and Natural 13 C Measurements in Ivory Coast," Land, MDPI, vol. 14(3), pages 1-13, March.
  • Handle: RePEc:gam:jlands:v:14:y:2025:i:3:p:535-:d:1605178
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/14/3/535/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/14/3/535/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Johannes Lehmann & Markus Kleber, 2015. "The contentious nature of soil organic matter," Nature, Nature, vol. 528(7580), pages 60-68, December.
    2. Jérôme Balesdent & Isabelle Basile-Doelsch & Joël Chadoeuf & Sophie Cornu & Delphine Derrien & Zuzana Fekiacova & Christine Hatté, 2018. "Atmosphere–soil carbon transfer as a function of soil depth," Nature, Nature, vol. 559(7715), pages 599-602, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ludovic Henneron & Jerôme Balesdent & Gaël Alvarez & Pierre Barré & François Baudin & Isabelle Basile-Doelsch & Lauric Cécillon & Alejandro Fernandez-Martinez & Christine Hatté & Sébastien Fontaine, 2022. "Bioenergetic control of soil carbon dynamics across depth," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    2. Salih Demirkaya & Abdurrahman Ay & Coşkun Gülser & Rıdvan Kızılkaya, 2025. "Enhancing Clay Soil Productivity with Fresh and Aged Biochar: A Two-Year Field Study on Soil Quality and Wheat Yield," Sustainability, MDPI, vol. 17(2), pages 1-18, January.
    3. Elena A. Mikhailova & Garth R. Groshans & Christopher J. Post & Mark A. Schlautman & Gregory C. Post, 2019. "Valuation of Soil Organic Carbon Stocks in the Contiguous United States Based on the Avoided Social Cost of Carbon Emissions," Resources, MDPI, vol. 8(3), pages 1-15, August.
    4. Rolinski, Susanne & Prishchepov, Alexander V. & Guggenberger, Georg & Bischoff, Norbert & Kurganova, Irina & Schierhorn, Florian & Müller, Daniel & Müller, Christoph, 2021. "Dynamics of soil organic carbon in the steppes of Russia and Kazakhstan under past and future climate and land use," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 21(3).
    5. Meiting Li & Keqin Wang & Xiaoyi Ma & Mingsi Fan & Biyu Li & Yali Song, 2025. "Relationship Between Soil Aggregate Stability and Associated Carbon and Nitrogen Changes Under Different Ecological Construction Measures in the Karst Region of Southwest China," Agriculture, MDPI, vol. 15(2), pages 1-23, January.
    6. Berazneva, Julia & McBride, Linden & Sheahan, Megan & Güereña, David, 2018. "Empirical assessment of subjective and objective soil fertility metrics in east Africa: Implications for researchers and policy makers," World Development, Elsevier, vol. 105(C), pages 367-382.
    7. Héctor Iván Bedolla-Rivera & María de la Luz Xochilt Negrete-Rodríguez & Miriam del Rocío Medina-Herrera & Francisco Paúl Gámez-Vázquez & Dioselina Álvarez-Bernal & Midory Samaniego-Hernández & Alfred, 2020. "Development of a Soil Quality Index for Soils under Different Agricultural Management Conditions in the Central Lowlands of Mexico: Physicochemical, Biological and Ecophysiological Indicators," Sustainability, MDPI, vol. 12(22), pages 1-24, November.
    8. Jakub Bekier & Elżbieta Jamroz & Karolina Walenczak-Bekier & Martyna Uściła, 2023. "Soil Organic Matter Composition in Urban Soils: A Study of Wrocław Agglomeration, SW Poland," Sustainability, MDPI, vol. 15(3), pages 1-12, January.
    9. Carine Naba & Hiroshi Ishidaira & Jun Magome & Kazuyoshi Souma, 2024. "Exploring the Potential of Soil and Water Conservation Measures for Climate Resilience in Burkina Faso," Sustainability, MDPI, vol. 16(18), pages 1-20, September.
    10. Liudmila Tripolskaja & Asta Kazlauskaite-Jadzevice & Eugenija Baksiene & Almantas Razukas, 2022. "Changes in Organic Carbon in Mineral Topsoil of a Formerly Cultivated Arenosol under Different Land Uses in Lithuania," Agriculture, MDPI, vol. 12(4), pages 1-19, March.
    11. Yongkang Wang & Junfeng Dai & Fan Jiang & Zupeng Wan & Shuaipu Zhang, 2025. "Coupled Effects of Water Depth, Vegetation, and Soil Properties on Soil Organic Carbon Components in the Huixian Wetland of the Li River Basin," Land, MDPI, vol. 14(3), pages 1-20, March.
    12. José Manuel Rato Nunes & António Bonito & Luis Loures & José Gama & Antonio López-Piñeiro & David Peña & Ángel Albarrán, 2017. "Effects of the European Union Agricultural and Environmental Policies in the Sustainability of Most Common Mediterranean Soils," Sustainability, MDPI, vol. 9(8), pages 1-16, August.
    13. Jianghua Tang & Lili Su & Yanfei Fang & Chen Wang & Linyi Meng & Jiayong Wang & Junyao Zhang & Wenxiu Xu, 2023. "Moderate Nitrogen Reduction Increases Nitrogen Use Efficiency and Positively Affects Microbial Communities in Agricultural Soils," Agriculture, MDPI, vol. 13(4), pages 1-24, March.
    14. Guillermo Martínez Pastur & Marie-Claire Aravena Acuña & Jimena E. Chaves & Juan M. Cellini & Eduarda M. O. Silveira & Julián Rodriguez-Souilla & Axel von Müller & Ludmila La Manna & María V. Lencinas, 2023. "Nitrogenous and Phosphorus Soil Contents in Tierra del Fuego Forests: Relationships with Soil Organic Carbon, Climate, Vegetation and Landscape Metrics," Land, MDPI, vol. 12(5), pages 1-18, April.
    15. He, Qinsi & Liu, De Li & Wang, Bin & Li, Linchao & Cowie, Annette & Simmons, Aaron & Zhou, Hongxu & Tian, Qi & Li, Sien & Li, Yi & Liu, Ke & Yan, Haoliang & Harrison, Matthew Tom & Feng, Puyu & Waters, 2022. "Identifying effective agricultural management practices for climate change adaptation and mitigation: A win-win strategy in South-Eastern Australia," Agricultural Systems, Elsevier, vol. 203(C).
    16. Steffen Schlüter & Frederic Leuther & Lukas Albrecht & Carmen Hoeschen & Rüdiger Kilian & Ronny Surey & Robert Mikutta & Klaus Kaiser & Carsten W. Mueller & Hans-Jörg Vogel, 2022. "Microscale carbon distribution around pores and particulate organic matter varies with soil moisture regime," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    17. Chao Chen & Yinglin Liang & Zhilong Chen & Changwu Zou & Zongbo Shi, 2024. "Black Carbon in Climate Studies: A Bibliometric Analysis of Research Trends and Topics," Sustainability, MDPI, vol. 16(20), pages 1-20, October.
    18. Yue Zhang & Guihua Liu & Zhixing Ma & Xin Deng & Jiahao Song & Dingde Xu, 2022. "The Influence of Land Attachment on Land Abandonment from the Perspective of Generational Difference: Evidence from Sichuan Province, China," IJERPH, MDPI, vol. 19(18), pages 1-15, September.
    19. Miriam Githongo & Lucy Ngatia & Milka Kiboi & Anne Muriuki & Andreas Fliessbach & Collins Musafiri & Riqiang Fu & Felix Ngetich, 2023. "The Structural Quality of Soil Organic Matter under Selected Soil Fertility Management Practices in the Central Highlands of Kenya," Sustainability, MDPI, vol. 15(8), pages 1-13, April.
    20. Shuai Wang & Nan Wang & Junping Xu & Xi Zhang & Sen Dou, 2019. "Contribution of Microbial Residues Obtained from Lignin and Cellulose on Humus Formation," Sustainability, MDPI, vol. 11(17), pages 1-12, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:14:y:2025:i:3:p:535-:d:1605178. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.