IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v14y2025i3p530-d1604538.html
   My bibliography  Save this article

Evaluation of Urban Infrastructure Resilience Based on Risk–Resilience Coupling: A Case Study of Zhengzhou City

Author

Listed:
  • Wenli Dong

    (College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310058, China)

  • Yunhan Zhou

    (College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310058, China)

  • Dongliang Guo

    (Zhengzhou Urban Planning Design and Survey Research Institute Co., Zhengzhou 450052, China)

  • Zhehui Chen

    (College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310058, China)

  • Jiwu Wang

    (College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310058, China)

Abstract

The frequent occurrence of disasters has brought significant challenges to increasingly complex urban systems. Resilient city planning and construction has emerged as a new paradigm for dealing with the growing risks. Infrastructure systems like transportation, lifelines, flood control, and drainage are essential to the operation of a city during disasters. It is necessary to measure how risks affect these systems’ resilience at different spatial scales. This paper develops an infrastructure risk and resilience evaluation index system in city and urban areas based on resilience characteristics. Then, a comprehensive infrastructure resilience evaluation is established based on the risk–resilience coupling mechanism. The overall characteristics of comprehensive infrastructure resilience are then identified. The resilience transmission level and the causes of resilience effects are analyzed based on the principle of resilience scale. Additionally, infrastructure resilience enhancement strategies under different risk scenarios are proposed. In the empirical study of Zhengzhou City, comprehensive infrastructure resilience shows significant clustering in the city area. It is high in the central city and low in the periphery. Specifically, it is relatively high in the southern and northwestern parts of the airport economy zone (AEZ) and low in the center. The leading driving factors in urban areas are risk factors like flood and drought, hazardous materials, infectious diseases, and epidemics, while resilience factors include transportation networks, sponge city construction, municipal pipe networks, and fire protection. This study proposes a “risk-resilience” coupling framework to evaluate and analyze multi-hazard risks and the multi-system resilience of urban infrastructure across multi-level spatial scales. It provides an empirical resilience evaluation framework and enhancement strategies, complementing existing individual dimensional risk or resilience studies. The findings could offer visualized spatial results to support the decision-making in Zhengzhou’s resilient city planning outline and infrastructure special planning and provide references for resilience assessment and planning in similar cities.

Suggested Citation

  • Wenli Dong & Yunhan Zhou & Dongliang Guo & Zhehui Chen & Jiwu Wang, 2025. "Evaluation of Urban Infrastructure Resilience Based on Risk–Resilience Coupling: A Case Study of Zhengzhou City," Land, MDPI, vol. 14(3), pages 1-27, March.
  • Handle: RePEc:gam:jlands:v:14:y:2025:i:3:p:530-:d:1604538
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/14/3/530/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/14/3/530/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hosseini, Seyedmohsen & Barker, Kash & Ramirez-Marquez, Jose E., 2016. "A review of definitions and measures of system resilience," Reliability Engineering and System Safety, Elsevier, vol. 145(C), pages 47-61.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hao Yin & Yong Xiang & Qian Fan & Yibin Ao & Donghu Chen, 2025. "Disaster Resilience Assessment and Key Drivers of Resilience Evolution in Mountainous Cities Facing Geo-Disasters: A Case Study of Disaster-Prone Counties in Western Sichuan," Sustainability, MDPI, vol. 17(8), pages 1-25, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fauzan Hanif Jufri & Jun-Sung Kim & Jaesung Jung, 2017. "Analysis of Determinants of the Impact and the Grid Capability to Evaluate and Improve Grid Resilience from Extreme Weather Event," Energies, MDPI, vol. 10(11), pages 1-17, November.
    2. Bucar, Raif C.B. & Hayeri, Yeganeh M., 2020. "Quantitative assessment of the impacts of disruptive precipitation on surface transportation," Reliability Engineering and System Safety, Elsevier, vol. 203(C).
    3. Chen, Chao & Yang, Ming & Reniers, Genserik, 2021. "A dynamic stochastic methodology for quantifying HAZMAT storage resilience," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    4. Yang, Bofan & Zhang, Lin & Zhang, Bo & Xiang, Yang & An, Lei & Wang, Wenfeng, 2022. "Complex equipment system resilience: Composition, measurement and element analysis," Reliability Engineering and System Safety, Elsevier, vol. 228(C).
    5. Hans Pasman & Kedar Kottawar & Prerna Jain, 2020. "Resilience of Process Plant: What, Why, and How Resilience Can Improve Safety and Sustainability," Sustainability, MDPI, vol. 12(15), pages 1-21, July.
    6. Liang, Zhenglin & Li, Yan-Fu, 2023. "Holistic Resilience and Reliability Measures for Cellular Telecommunication Networks," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    7. Zou, Qiling & Chen, Suren, 2019. "Enhancing resilience of interdependent traffic-electric power system," Reliability Engineering and System Safety, Elsevier, vol. 191(C).
    8. Hongyan Dui & Xinyue Wang & Haohao Zhou, 2023. "Redundancy-Based Resilience Optimization of Multi-Component Systems," Mathematics, MDPI, vol. 11(14), pages 1-16, July.
    9. Gianluca Fulli & Marcelo Masera & Catalin Felix Covrig & Francesco Profumo & Ettore Bompard & Tao Huang, 2017. "The EU Electricity Security Decision-Analytic Framework: Status and Perspective Developments," Energies, MDPI, vol. 10(4), pages 1-20, March.
    10. Zhaoming Yang & Qi Xiang & Yuxuan He & Shiliang Peng & Michael Havbro Faber & Enrico Zio & Lili Zuo & Huai Su & Jinjun Zhang, 2023. "Resilience of Natural Gas Pipeline System: A Review and Outlook," Energies, MDPI, vol. 16(17), pages 1-19, August.
    11. Mohamad Darayi & Kash Barker & Joost R. Santos, 2017. "Component Importance Measures for Multi-Industry Vulnerability of a Freight Transportation Network," Networks and Spatial Economics, Springer, vol. 17(4), pages 1111-1136, December.
    12. Yusuke Toyoda, 2021. "Survey paper: achievements and perspectives of community resilience approaches to societal systems," Asia-Pacific Journal of Regional Science, Springer, vol. 5(3), pages 705-756, October.
    13. Khalilullah Mayar & David G. Carmichael & Xuesong Shen, 2022. "Resilience and Systems—A Review," Sustainability, MDPI, vol. 14(14), pages 1-22, July.
    14. Elizabeth Ekren & Maria E. Tomasso & Melinda M. Villagran, 2024. "Resilience as a Concept for Convergence Across Health, Systems, and Well-Being: An AI-Augmented Mapping of 50 Years of Resilience Research," Sustainability, MDPI, vol. 16(23), pages 1-32, November.
    15. Ming Lu & Zhuolin Tan & Chao Yuan & Yu Dong & Wei Dong, 2023. "Resilience Measurements and Dynamics of Resource-Based Cities in Heilongjiang Province, China," Land, MDPI, vol. 12(2), pages 1-22, January.
    16. Hongyan Dui & Kaixin Liu & Shaomin Wu, 2024. "Data-driven reliability and resilience measure of transportation systems considering disaster levels," Annals of Operations Research, Springer, vol. 340(1), pages 217-243, September.
    17. Kammouh, Omar & Gardoni, Paolo & Cimellaro, Gian Paolo, 2020. "Probabilistic framework to evaluate the resilience of engineering systems using Bayesian and dynamic Bayesian networks," Reliability Engineering and System Safety, Elsevier, vol. 198(C).
    18. Mohamed Gaha & Bilal Chabane & Dragan Komljenovic & Alain Côté & Claude Hébert & Olivier Blancke & Atieh Delavari & Georges Abdul-Nour, 2021. "Global Methodology for Electrical Utilities Maintenance Assessment Based on Risk-Informed Decision Making," Sustainability, MDPI, vol. 13(16), pages 1-23, August.
    19. Amitkumar V. Jha & Bhargav Appasani & Deepak Kumar Gupta & Taha Selim Ustun, 2022. "Analytical Design of Synchrophasor Communication Networks with Resiliency Analysis Framework for Smart Grid," Sustainability, MDPI, vol. 14(22), pages 1-17, November.
    20. Landegren, Finn & Höst, Martin & Möller, Peter, 2018. "Simulation based assessment of resilience of two large-scale socio-technical IT networks," International Journal of Critical Infrastructure Protection, Elsevier, vol. 23(C), pages 112-125.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:14:y:2025:i:3:p:530-:d:1604538. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.