Author
Listed:
- Hao Yin
(School of Architecture and Civil Engineering, Xihua University, Chengdu 610039, China)
- Yong Xiang
(School of Architecture and Civil Engineering, Xihua University, Chengdu 610039, China)
- Qian Fan
(School of Architecture and Civil Engineering, Xihua University, Chengdu 610039, China)
- Yibin Ao
(College of Environment and Civil Engineering, Chengdu University of Technology, Chengdu 610059, China)
- Donghu Chen
(School of Architecture and Civil Engineering, Xihua University, Chengdu 610039, China)
Abstract
With global population growth and accelerated technological innovation, human activities have expanded, leading to worsening ecological degradation and more frequent disasters, particularly in vulnerable and underdeveloped mountainous areas. Western Sichuan, predominantly consisting of mountainous cities, has unique geographical conditions that not only hinder socioeconomic development but also create an environment conducive to disaster occurrence. This study, therefore, investigates the disaster resilience of mountainous cities in western Sichuan. Using support vector machine (SVM), this study predicts geo-disaster risks. Shapley values from cooperative game theory are employed to optimize three evaluation methods, TOPSIS, Grey Relational Analysis (GRA), and Rank Sum Ratio (RSR), to calculate social resilience values. Finally, disaster resilience values are determined by integrating geo-disaster risk with socioeconomic resilience. Kernel density estimation and GeoDetector are then used to analyze the disaster resilience values. The findings reveal that (1) the disaster resilience of mountainous cities is generally improving, with a gradual decrease in the number of cities with low resilience, though the overall level remains low; (2) resilience disparities among cities are evident, showing an “east-high, west-low” distribution, primarily due to the eastern region’s proximity to developed cities and the socioeconomic support it has received; (3) the proliferation of information technology and the development of tourism are key drivers of resilience development, while human activities exacerbate geo-disaster risks; (4) the enhancement of disaster resilience is more dependent on the interaction of multiple driving factors than on any single factor. This study, aligned with the United Nations Sustainable Development Goals (SDG3, SDG4, SDG8, SDG9, SDG11, and SDG15), offers recommendations for disaster resilience development and provides theoretical support for policy formulation in mountainous cities.
Suggested Citation
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:17:y:2025:i:8:p:3291-:d:1630059. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.