IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v11y2019i10p2888-d233071.html
   My bibliography  Save this article

Climate Change Resilience Strategies for the Building Sector: Examining Existing Domains of Resilience Utilized by Design Professionals

Author

Listed:
  • Nicholas B. Rajkovich

    (School of Architecture and Planning, State University of New York at Buffalo, Buffalo, NY 14214, USA)

  • Yasmein Okour

    (College of Architecture and Design, Jordan University of Science and Technology, Irbid 22110, Jordan)

Abstract

Recently, climate change resilience efforts in the building sector have increased. Previous studies have examined the theoretical frameworks that have shaped the concept development of resilience. However, little is known about the theoretical approaches adopted by building professionals in their climate change resilience work. A literature review identified climate change resilience across four academic domains: ecology, engineering, disaster risk reduction, and the social sciences. To better understand how resilience is defined in the building sector, we examined eighteen climate change resilience documents developed to provide guidance to building sector professionals in the United States. Our analysis of these documents helps to understand how professionals are framing and possibly incorporating these strategies in their work, though we did not measure the adoption rate of each of the documents. We find that resilience is mostly a discourse on bouncing-back, preserving the status quo, and/or developing emergency responses to major hazards. Fewer documents incorporated an ecological or social science-based logic. This highlights the challenges of translating resilience from four academic domains into building strategies for the professional community. In closing, we discuss how competing conceptions of resilience may impact the implementation and effectiveness of climate change resilience strategies in the built environment.

Suggested Citation

  • Nicholas B. Rajkovich & Yasmein Okour, 2019. "Climate Change Resilience Strategies for the Building Sector: Examining Existing Domains of Resilience Utilized by Design Professionals," Sustainability, MDPI, vol. 11(10), pages 1-15, May.
  • Handle: RePEc:gam:jsusta:v:11:y:2019:i:10:p:2888-:d:233071
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/11/10/2888/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/11/10/2888/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Daniel Lorenz, 2013. "The diversity of resilience: contributions from a social science perspective," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 67(1), pages 7-24, May.
    2. Hosseini, Seyedmohsen & Barker, Kash & Ramirez-Marquez, Jose E., 2016. "A review of definitions and measures of system resilience," Reliability Engineering and System Safety, Elsevier, vol. 145(C), pages 47-61.
    3. Sara Meerow & Melissa Stults, 2016. "Comparing Conceptualizations of Urban Climate Resilience in Theory and Practice," Sustainability, MDPI, vol. 8(7), pages 1-16, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pawel Gromek & Grzegorz Sobolewski, 2020. "Risk-Based Approach for Informing Sustainable Infrastructure Resilience Enhancement and Potential Resilience Implication in Terms of Emergency Service Perspective," Sustainability, MDPI, vol. 12(11), pages 1-30, June.
    2. Hadi Sarvari & Mansooreh Rakhshanifar & Jolanta Tamošaitienė & Daniel W.M. Chan & Michael Beer, 2019. "A Risk Based Approach to Evaluating the Impacts of Zayanderood Drought on Sustainable Development Indicators of Riverside Urban in Isfahan-Iran," Sustainability, MDPI, vol. 11(23), pages 1-20, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Amro Nasr & Oskar Larsson Ivanov & Ivar Björnsson & Jonas Johansson & Dániel Honfi, 2021. "Towards a Conceptual Framework for Built Infrastructure Design in an Uncertain Climate: Challenges and Research Needs," Sustainability, MDPI, vol. 13(21), pages 1-19, October.
    2. Heather McMillen & Lindsay K. Campbell & Erika S. Svendsen & Renae Reynolds, 2016. "Recognizing Stewardship Practices as Indicators of Social Resilience: In Living Memorials and in a Community Garden," Sustainability, MDPI, vol. 8(8), pages 1-26, August.
    3. Ana Raquel Nunes, 2021. "Exploring the interactions between vulnerability, resilience and adaptation to extreme temperatures," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 109(3), pages 2261-2293, December.
    4. Trucco, Paolo & Petrenj, Boris, 2023. "Characterisation of resilience metrics in full-scale applications to interdependent infrastructure systems," Reliability Engineering and System Safety, Elsevier, vol. 235(C).
    5. Roth, Florian & Warnke, Philine & Niessen, Pia & Edler, Jakob, 2021. "Insights into systemic resilience from innovation research," Perspectives – Policy Briefs 03 / 2021, Fraunhofer Institute for Systems and Innovation Research (ISI).
    6. Fauzan Hanif Jufri & Jun-Sung Kim & Jaesung Jung, 2017. "Analysis of Determinants of the Impact and the Grid Capability to Evaluate and Improve Grid Resilience from Extreme Weather Event," Energies, MDPI, vol. 10(11), pages 1-17, November.
    7. Bucar, Raif C.B. & Hayeri, Yeganeh M., 2020. "Quantitative assessment of the impacts of disruptive precipitation on surface transportation," Reliability Engineering and System Safety, Elsevier, vol. 203(C).
    8. Chen, Chao & Yang, Ming & Reniers, Genserik, 2021. "A dynamic stochastic methodology for quantifying HAZMAT storage resilience," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    9. Milan Janić, 2018. "Modelling the resilience of rail passenger transport networks affected by large-scale disruptive events: the case of HSR (high speed rail)," Transportation, Springer, vol. 45(4), pages 1101-1137, July.
    10. Yang, Bofan & Zhang, Lin & Zhang, Bo & Xiang, Yang & An, Lei & Wang, Wenfeng, 2022. "Complex equipment system resilience: Composition, measurement and element analysis," Reliability Engineering and System Safety, Elsevier, vol. 228(C).
    11. Hans Pasman & Kedar Kottawar & Prerna Jain, 2020. "Resilience of Process Plant: What, Why, and How Resilience Can Improve Safety and Sustainability," Sustainability, MDPI, vol. 12(15), pages 1-21, July.
    12. Zobel, Christopher W. & Baghersad, Milad, 2020. "Analytically comparing disaster resilience across multiple dimensions," Socio-Economic Planning Sciences, Elsevier, vol. 69(C).
    13. Zeng, Zhiguo & Fang, Yi-Ping & Zhai, Qingqing & Du, Shijia, 2021. "A Markov reward process-based framework for resilience analysis of multistate energy systems under the threat of extreme events," Reliability Engineering and System Safety, Elsevier, vol. 209(C).
    14. Liang, Zhenglin & Li, Yan-Fu, 2023. "Holistic Resilience and Reliability Measures for Cellular Telecommunication Networks," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    15. Zou, Qiling & Chen, Suren, 2019. "Enhancing resilience of interdependent traffic-electric power system," Reliability Engineering and System Safety, Elsevier, vol. 191(C).
    16. Wiriya Puntub & Stefan Greiving, 2022. "Advanced Operationalization Framework for Climate-Resilient Urban Public Health Care Services: Composite Indicators-Based Scenario Assessment of Khon Kaen City, Thailand," IJERPH, MDPI, vol. 19(3), pages 1-20, January.
    17. Gianluca Fulli & Marcelo Masera & Catalin Felix Covrig & Francesco Profumo & Ettore Bompard & Tao Huang, 2017. "The EU Electricity Security Decision-Analytic Framework: Status and Perspective Developments," Energies, MDPI, vol. 10(4), pages 1-20, March.
    18. Zhaoming Yang & Qi Xiang & Yuxuan He & Shiliang Peng & Michael Havbro Faber & Enrico Zio & Lili Zuo & Huai Su & Jinjun Zhang, 2023. "Resilience of Natural Gas Pipeline System: A Review and Outlook," Energies, MDPI, vol. 16(17), pages 1-19, August.
    19. Mohamad Darayi & Kash Barker & Joost R. Santos, 2017. "Component Importance Measures for Multi-Industry Vulnerability of a Freight Transportation Network," Networks and Spatial Economics, Springer, vol. 17(4), pages 1111-1136, December.
    20. Yusuke Toyoda, 2021. "Survey paper: achievements and perspectives of community resilience approaches to societal systems," Asia-Pacific Journal of Regional Science, Springer, vol. 5(3), pages 705-756, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:11:y:2019:i:10:p:2888-:d:233071. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.