IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v14y2025i2p245-d1576385.html
   My bibliography  Save this article

Dynamic Simulation and Reduction Path of Carbon Emission in “Three-Zone Space”: A Case Study of a Rapidly Urbanizing City

Author

Listed:
  • Ying Wang

    (School of Public Administration, China University of Geosciences, Wuhan 430074, China)

  • Yiqi Fan

    (School of Public Administration, China University of Geosciences, Wuhan 430074, China)

  • Haiyang Li

    (School of Public Policy and Management, Tsinghua University, Beijing 100084, China)

  • Zhiyu Shang

    (School of Public Administration, China University of Geosciences, Wuhan 430074, China)

Abstract

Understanding the current and future net carbon emission trajectories in “Three-Zone Space” is crucial for China to promote the formation of a low-carbon development pattern in territorial space and realize carbon neutrality. Taking Wuhan as the study area, we developed carbon emission and sequestration inventories for “Three-Zone Space”. Key driving factors of net carbon emissions were analyzed using the logarithmic mean division index, and future emissions and sequestration under six scenarios were projected with a system dynamics model. The optimal emission reduction pathway was identified through the intelligent decision-making index analysis. Our results show that Wuhan’s net carbon emission increased from 18.589 Mt in 2000 to 42.794 Mt in 2020. The emissions during this period primarily came from urban production space and urban living space. Economic development is the primary factor contributing to the increase in net carbon emissions (36.412 Mt). The efficiency of territorial space utilization is the strongest mitigator of net carbon emissions, reducing net carbon emissions by 74.341 Mt (accounting for 42.06% of total emissions). The comprehensive scenario is the most effective for net carbon emission reduction in urban and ecological spaces, while the technological progress scenario provides the greatest reduction potential in agricultural spaces. These findings provide actionable insights for optimizing spatial planning, enhancing ecological restoration, and adopting low-carbon agricultural technologies to achieve targeted emissions reductions in “Three-Zone Space”. The results of this study can further provide scientific basis for the formulation of targeted emission reduction measures for “Three-Zone Space” and guide the construction of low-carbon territorial space patterns.

Suggested Citation

  • Ying Wang & Yiqi Fan & Haiyang Li & Zhiyu Shang, 2025. "Dynamic Simulation and Reduction Path of Carbon Emission in “Three-Zone Space”: A Case Study of a Rapidly Urbanizing City," Land, MDPI, vol. 14(2), pages 1-28, January.
  • Handle: RePEc:gam:jlands:v:14:y:2025:i:2:p:245-:d:1576385
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/14/2/245/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/14/2/245/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Fang, Kai & Tang, Yiqi & Zhang, Qifeng & Song, Junnian & Wen, Qi & Sun, Huaping & Ji, Chenyang & Xu, Anqi, 2019. "Will China peak its energy-related carbon emissions by 2030? Lessons from 30 Chinese provinces," Applied Energy, Elsevier, vol. 255(C).
    2. John Barrett & Glen Peters & Thomas Wiedmann & Kate Scott & Manfred Lenzen & Katy Roelich & Corinne Le Qu�r�, 2013. "Consumption-based GHG emission accounting: a UK case study," Climate Policy, Taylor & Francis Journals, vol. 13(4), pages 451-470, July.
    3. Chen, Weiming & Lei, Yalin & Feng, Kuishuang & Wu, Sanmang & Li, Li, 2019. "Provincial emission accounting for CO2 mitigation in China: Insights from production, consumption and income perspectives," Applied Energy, Elsevier, vol. 255(C).
    4. Jin, Gui & Guo, Baishu & Deng, Xiangzheng, 2020. "Is there a decoupling relationship between CO2 emission reduction and poverty alleviation in China?," Technological Forecasting and Social Change, Elsevier, vol. 151(C).
    5. Dirk-Jan van de Ven & Shivika Mittal & Ajay Gambhir & Robin D. Lamboll & Haris Doukas & Sara Giarola & Adam Hawkes & Konstantinos Koasidis & Alexandre C. Köberle & Haewon McJeon & Sigit Perdana & Glen, 2023. "A multimodel analysis of post-Glasgow climate targets and feasibility challenges," Nature Climate Change, Nature, vol. 13(6), pages 570-578, June.
    6. Silvia Pianta & Elina Brutschin, 2023. "Increased ambition is needed after Glasgow," Nature Climate Change, Nature, vol. 13(6), pages 505-506, June.
    7. Du, Kerui & Cheng, Yuanyuan & Yao, Xin, 2021. "Environmental regulation, green technology innovation, and industrial structure upgrading: The road to the green transformation of Chinese cities," Energy Economics, Elsevier, vol. 98(C).
    8. Wang, Shaojian & Fang, Chuanglin & Guan, Xingliang & Pang, Bo & Ma, Haitao, 2014. "Urbanisation, energy consumption, and carbon dioxide emissions in China: A panel data analysis of China’s provinces," Applied Energy, Elsevier, vol. 136(C), pages 738-749.
    9. Wang, Shaojian & Wang, Jieyu & Fang, Chuanglin & Feng, Kuishuang, 2019. "Inequalities in carbon intensity in China: A multi-scalar and multi-mechanism analysis," Applied Energy, Elsevier, vol. 254(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ying Wang & Jiaqi Li & Yiqi Fan & Wanling Chen, 2025. "High-Standard Farmland Construction Policy, Agricultural New-Quality Productivity, and Greenhouse Gas Emissions from Crop Cultivation: Evidence from China," Land, MDPI, vol. 14(6), pages 1-25, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Guo, Xuepeng & Pang, Jun, 2023. "Analysis of provincial CO2 emission peaking in China: Insights from production and consumption," Applied Energy, Elsevier, vol. 331(C).
    2. Meng Yang & Yisheng Liu & Jinzhao Tian & Feiyu Cheng & Pengbo Song, 2022. "Dynamic Evolution and Regional Disparity in Carbon Emission Intensity in China," Sustainability, MDPI, vol. 14(7), pages 1-15, March.
    3. Yi Feng & Diyun Peng & Yafei Li & Shuai Liu, 2024. "Can regional integration reduce carbon intensity? Evidence from city cluster in China," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 26(2), pages 5249-5274, February.
    4. Chen, Guangwu & Wiedmann, Thomas & Wang, Yafei & Hadjikakou, Michalis, 2016. "Transnational city carbon footprint networks – Exploring carbon links between Australian and Chinese cities," Applied Energy, Elsevier, vol. 184(C), pages 1082-1092.
    5. Kashif Raza Abbasi & Qingyu Zhang, 2024. "Augmenting agricultural sustainability: Investigating the role of agricultural land, green innovation, and food production in reducing greenhouse gas emissions," Sustainable Development, John Wiley & Sons, Ltd., vol. 32(6), pages 6918-6933, December.
    6. Wu, Sanmang & Li, Shantong & Lei, Yalin & Li, Li, 2020. "Temporal changes in China's production and consumption-based CO2 emissions and the factors contributing to changes," Energy Economics, Elsevier, vol. 89(C).
    7. Yue, Wencong & Li, Yangqing & Su, Meirong & Chen, Qionghong & Rong, Qiangqiang, 2023. "Carbon emissions accounting and prediction in urban agglomerations from multiple perspectives of production, consumption and income," Applied Energy, Elsevier, vol. 348(C).
    8. Hu, Hui & Qi, Shaozhou & Chen, Yuanzhi, 2023. "Using green technology for a better tomorrow: How enterprises and government utilize the carbon trading system and incentive policies," China Economic Review, Elsevier, vol. 78(C).
    9. Shi, Changfeng & Zhi, Jiaqi & Yao, Xiao & Zhang, Hong & Yu, Yue & Zeng, Qingshun & Li, Luji & Zhang, Yuxi, 2023. "How can China achieve the 2030 carbon peak goal—a crossover analysis based on low-carbon economics and deep learning," Energy, Elsevier, vol. 269(C).
    10. Chuan Tian & Guohui Feng & Huanyu Li, 2023. "Empirical Study on the Impact of Urbanization and Carbon Emissions under the Dual-Carbon Framework Based on Coupling and Coordination," Sustainability, MDPI, vol. 15(6), pages 1-20, March.
    11. Ran, Qiying & Yang, Xiaodong & Yan, Hongchuan & Xu, Yang & Cao, Jianhong, 2023. "Natural resource consumption and industrial green transformation: Does the digital economy matter?," Resources Policy, Elsevier, vol. 81(C).
    12. Bei Liu & Jinmin Wang & Xinle Tong & Zhihua Zhou & Zhaoxuan Qiu, 2024. "Institutional investor shareholding and the quality of corporate innovation: Moderating effects based on internal and external environment," Managerial and Decision Economics, John Wiley & Sons, Ltd., vol. 45(1), pages 326-338, January.
    13. Xueyang Wang & Xiumei Sun & Haotian Zhang & Chaokai Xue, 2022. "Digital Economy Development and Urban Green Innovation CA-Pability: Based on Panel Data of 274 Prefecture-Level Cities in China," Sustainability, MDPI, vol. 14(5), pages 1-21, March.
    14. Zhenkai Yang & Mei-Chih Wang & Tsangyao Chang & Wing-Keung Wong & Fangjhy Li, 2022. "Which Factors Determine CO 2 Emissions in China? Trade Openness, Financial Development, Coal Consumption, Economic Growth or Urbanization: Quantile Granger Causality Test," Energies, MDPI, vol. 15(7), pages 1-18, March.
    15. Muhammad, Tufail & Ni, Guohua & Chen, Zhenling & Mallek, Sabrine & Dudek, Marek & Mentel, Grzegorz, 2024. "Addressing resource curse: How mineral resources influence industrial structure dynamics of the BRI 57 oil-exporting countries," Resources Policy, Elsevier, vol. 99(C).
    16. Bu, Yan & Wang, Erda & Möst, Dominik & Lieberwirth, Martin, 2022. "How population migration affects carbon emissions in China: Factual and counterfactual scenario analysis," Technological Forecasting and Social Change, Elsevier, vol. 184(C).
    17. Yanli Ji & Jie Xue & Kaiyang Zhong, 2022. "Does Environmental Regulation Promote Industrial Green Technology Progress? Empirical Evidence from China with a Heterogeneity Analysis," IJERPH, MDPI, vol. 19(1), pages 1-23, January.
    18. Zhu, Junpeng & Lin, Boqiang, 2022. "Resource dependence, market-oriented reform, and industrial transformation: Empirical evidence from Chinese cities," Resources Policy, Elsevier, vol. 78(C).
    19. Pottier, Antonin & Combet, Emmanuel & Cayla, Jean-Michel & de Lauretis, Simona & Nadaud, Franck, 2021. "Who emits CO2 ? Landscape of ecological inequalities in France from a critical perspective," FEEM Working Papers 311053, Fondazione Eni Enrico Mattei (FEEM).
    20. Feifei Yu & Jiayi Mao & Qing Jiang, 2025. "Accumulate thickly to grow thinly: the U-shaped relationship between digital transformation and corporate carbon performance," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 27(1), pages 2135-2160, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:14:y:2025:i:2:p:245-:d:1576385. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.