IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v13y2024i4p535-d1377505.html
   My bibliography  Save this article

Assessment of Uncertainties in Ecological Risk Based on the Prediction of Land Use Change and Ecosystem Service Evolution

Author

Listed:
  • Chang You

    (School of Ethnology and Sociology, Minzu University of China, Beijing 100081, China)

  • Hongjiao Qu

    (School of Ethnology and Sociology, Minzu University of China, Beijing 100081, China)

  • Shidong Zhang

    (College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China)

  • Luo Guo

    (College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China)

Abstract

With the rapid progress in urbanization and economic development, the impact of land use change (LUC) on ecosystem services is becoming increasingly significant. However, the accuracy of ecological risk assessment faces challenges due to the presence of uncertainty factors. Using the PLUS model, this study aims to simulate and predict land use changes (LUCs), focusing on the southern hilly regions in southeastern China as a case study, conducting an in-depth assessment of ecological risk uncertainty. Firstly, a spatiotemporal simulation of LUCs in the southern hilly region from 1990 to 2030 was conducted under multiple scenarios. Subsequently, differences in the spatial and temporal distribution of ecosystem service value (ESV) across different years and forecast scenarios in the southern hilly region were revealed, followed by a detailed analysis of the impact of LUCs on ESV. Finally, by calculating the Ecological Risk Index (ERI), the study systematically analyzed the evolution trend of ecological risk in the southern hilly region of China from 1990 to 2030. The main research findings are as follows: (1) the conversion proportions of different land use types vary significantly under different scenarios. Compared to 2020, under the 2030 National Development Scenarios (NDSs), there has been a slight decrease of around 3% in the total conversion area of farmland, forest, and grassland. However, under the Ecological Protection Scenario (EPS) and Urban Development Scenario (UDS) scenarios, there has been an increase in the area of forest and grassland, with a rise of approximately 1.5% in converted built-up land. (2) Western cities (e.g., Yueyang and Yiyang), central cities (e.g., Jiujiang), and northeastern cities (e.g., Suzhou) of China exhibit a relatively high ESV distribution, while ESV significantly decreased overall from 2010 to 2020. However, under the EPS and UDS, ESV shows a significant increasing trend, suggesting that these two scenarios may play a crucial role in ecosystem restoration. (3) The conversion of forest and water bodies to farmland has the most significant inhibitory effect on ESV, especially during the period from 1990 to 2000, providing substantial data support for relevant policy formulation. (4) From 1990 to 2030, ecological risk gradually increased in western, central, and southwestern cities of the southern hilly region, with the highest ecological risk values under the EPS scenario in northern cities (e.g., Chizhou and Tongling). Under the UDS scenario, there has been a significant decrease in ecological risk, providing valuable insights for future ecological conservation and sustainable development. However, a limitation lies in the need for further enhancement of the scenario’s simulation authenticity. This study offers a new perspective for understanding the impact of LUCs on ecosystem services and the uncertainty of ecological risks, providing crucial reference points for land resource management and the formulation of ecological conservation policies.

Suggested Citation

  • Chang You & Hongjiao Qu & Shidong Zhang & Luo Guo, 2024. "Assessment of Uncertainties in Ecological Risk Based on the Prediction of Land Use Change and Ecosystem Service Evolution," Land, MDPI, vol. 13(4), pages 1-21, April.
  • Handle: RePEc:gam:jlands:v:13:y:2024:i:4:p:535-:d:1377505
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/13/4/535/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/13/4/535/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Lippe, Melvin & Rummel, Lisa & Günter, Sven, 2022. "Simulating land use and land cover change under contrasting levels of policy enforcement and its spatially-explicit impact on tropical forest landscapes in Ecuador," Land Use Policy, Elsevier, vol. 119(C).
    2. Solovjova, N.V., 2019. "Ecological risk modelling in developing resources of ecosystems characterized by varying vulnerability levels," Ecological Modelling, Elsevier, vol. 406(C), pages 60-72.
    3. Negasi Solomon & Alcade C. Segnon & Emiru Birhane, 2019. "Ecosystem Service Values Changes in Response to Land-Use/Land-Cover Dynamics in Dry Afromontane Forest in Northern Ethiopia," IJERPH, MDPI, vol. 16(23), pages 1-15, November.
    4. Wenbo Cai & Wei Jiang & Hongyu Du & Ruishan Chen & Yongli Cai, 2021. "Assessing Ecosystem Services Supply-Demand (Mis)Matches for Differential City Management in the Yangtze River Delta Urban Agglomeration," IJERPH, MDPI, vol. 18(15), pages 1-22, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Appiah, Michael & Li, Mingxing & Sehrish, Saba & Abaji, Emad Eddin, 2023. "Investigating the connections between innovation, natural resource extraction, and environmental pollution in OECD nations; examining the role of capital formation," Resources Policy, Elsevier, vol. 81(C).
    2. Yu Chen & Yilian Liu & Shengfu Yang & Chengwu Liu, 2023. "Impact of Land-Use Change on Ecosystem Services in the Wuling Mountains from a Transport Development Perspective," IJERPH, MDPI, vol. 20(2), pages 1-21, January.
    3. Xueqing Wang & Zhongyi Ding & Shaoliang Zhang & Huping Hou & Zanxu Chen & Qinyu Wu, 2022. "Spatial–Temporal Multivariate Correlation Analysis of Ecosystem Services and Ecological Risk in Areas of Overlapped Cropland and Coal Resources in the Eastern Plains, China," Land, MDPI, vol. 12(1), pages 1-16, December.
    4. Xuexian Xu & Yuling Peng, 2023. "Ecological Compensation in Zhijiang City Based on Ecosystem Service Value and Ecological Risk," Sustainability, MDPI, vol. 15(6), pages 1-17, March.
    5. Hejie Wei & Jiaxin Zheng & Dong Xue & Xiaobin Dong & Mengxue Liu & Yali Zhang, 2022. "Identifying the Relationship between Livelihoods and Land Ecosystem Services Using a Coupled Model: A Case Study in the “One River and Two Tributaries” Region of Tibet," Land, MDPI, vol. 11(9), pages 1-23, August.
    6. Xufeng Cui & Cuicui Liu & Ling Shan & Jiaqi Lin & Jing Zhang & Yuehua Jiang & Guanghong Zhang, 2021. "Spatial-Temporal Responses of Ecosystem Services to Land Use Transformation Driven by Rapid Urbanization: A Case Study of Hubei Province, China," IJERPH, MDPI, vol. 19(1), pages 1-19, December.
    7. Guo Cai & Yuying Lin & Fazi Zhang & Shihe Zhang & Linsheng Wen & Baoyin Li, 2022. "Response of Ecosystem Service Value to Landscape Pattern Changes under Low-Carbon Scenario: A Case Study of Fujian Coastal Areas," Land, MDPI, vol. 11(12), pages 1-23, December.
    8. Chong Zhao & Pengnan Xiao & Peng Qian & Jie Xu & Lin Yang & Yixiao Wu, 2022. "Spatiotemporal Differentiation and Balance Pattern of Ecosystem Service Supply and Demand in the Yangtze River Economic Belt," IJERPH, MDPI, vol. 19(12), pages 1-20, June.
    9. Andrea Urgilez-Clavijo & David Rivas-Tabares & Anne Gobin & Juan de la Riva, 2024. "Comprehensive Framework for Analysing the Intensity of Land Use and Land Cover Change in Continental Ecuadorian Biosphere Reserves," Sustainability, MDPI, vol. 16(4), pages 1-21, February.
    10. Juan F. Velasco-Munoz & José A. Aznar-Sánchez & Marina Schoenemann & Belén López-Felices, 2022. "The economic valuation of ecosystem services: bibliometric analysis," Oeconomia Copernicana, Institute of Economic Research, vol. 13(4), pages 977-1014, December.
    11. Jinli Shi & Tuodi Wang & Liping Xu & Zhiyu Gao & Cui Cao & Yutian Luo & Yunyun Xi & Yu Zhang, 2024. "Study on the Ecological Compensation Standard in the Xinjiang Uygur Autonomous Region of China under the Perspective of Natural Capital Supply and Demand," Sustainability, MDPI, vol. 16(7), pages 1-22, April.
    12. Shuo Yang & Hao Su, 2022. "Multi-Scenario Simulation of Ecosystem Service Values in the Guanzhong Plain Urban Agglomeration, China," Sustainability, MDPI, vol. 14(14), pages 1-23, July.
    13. Narcisa Medranda-Morales & Roberto Sánchez-Montoya & Josselyn Vanessa Ayuy Cevallos & Joselyne Andrea Soria Rojas, 2022. "Challenges for the Construction of Environmental Journalism in Ecuador and the COP26 in Digital Media," Sustainability, MDPI, vol. 14(20), pages 1-13, October.
    14. Danny Daniel Castillo Vizuete & Alex Vinicio Gavilanes Montoya & Carlos Renato Chávez Velásquez & Stelian Alexandru Borz, 2023. "A Critical Review on the Perspectives of the Forestry Sector in Ecuador," Land, MDPI, vol. 12(1), pages 1-18, January.
    15. Yongjun Du & Xiaolong Li & Xinlin He & Xiaoqian Li & Guang Yang & Dongbo Li & Wenhe Xu & Xiang Qiao & Chen Li & Lu Sui, 2022. "Multi-Scenario Simulation and Trade-Off Analysis of Ecological Service Value in the Manas River Basin Based on Land Use Optimization in China," IJERPH, MDPI, vol. 19(10), pages 1-31, May.
    16. Sai Hu & Longqian Chen & Long Li & Ting Zhang & Lina Yuan & Liang Cheng & Jia Wang & Mingxin Wen, 2020. "Simulation of Land Use Change and Ecosystem Service Value Dynamics under Ecological Constraints in Anhui Province, China," IJERPH, MDPI, vol. 17(12), pages 1-21, June.
    17. Wenbo Cai, 2022. "Identifying Ecosystem Services Bundles for Ecosystem Services Trade-Off/Synergy Governance in an Urbanizing Region," Land, MDPI, vol. 11(9), pages 1-15, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:13:y:2024:i:4:p:535-:d:1377505. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.