IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v406y2019icp60-72.html
   My bibliography  Save this article

Ecological risk modelling in developing resources of ecosystems characterized by varying vulnerability levels

Author

Listed:
  • Solovjova, N.V.

Abstract

This paper proposes a method for mathematical modeling and ecological risk assessment in marine ecosystems under the combined action of natural, anthropogenic, climatic and invasive factors. The method is based on the combined use of dynamic models, probabilistic eco-screening risk assessments and observational data (EERO). Main advantage of the proposed approach in comparing with the already known methods lies in modeling the stressors effect on the ecosystem main components intra-annual functioning mode. This allows obtaining the ecological risk intra-annual variations, identifying the intra-year intervals of increased danger and calculating the corresponding acceptable probability of anthropogenic impact. Risk simulation examples in regard to the temperate latitude regions (Northern Caspian) highly productive ecosystems and to the Arctic area low productive ecosystems are provided. Results obtained brought to nontrivial conclusions on the ecosystems vulnerability and on the necessity to prioritize ecological risk calculation followed by assessment of the allowable exposure probability. In the environmental and economic aspect, the use of EERO would help to minimize economic expenses in the development of shelf resources. Calculation of the intra-annual ecological risk variations and the corresponding calculation of the anthropogenic impact allowable probability would make it possible to vary expenses on the ecological protection measures. The volume of such measures would be determined by increasing or decreasing requirements to the acceptable anthropogenic load calculated in accordance with the model. The paper substantiates the primacy nature of determining the acceptable ecological risk value and further the acceptable intensity of anthropogenic impact that opens a possibility to receive answers to questions on the basic acceptability of accidents of a certain scale. The method is efficient in assessing the risk to ecosystems with varying degrees of vulnerability. The proposed approach is important for practical coordination of ecological and economic requirements in safe development of shelf resources and in costs minimizing.

Suggested Citation

  • Solovjova, N.V., 2019. "Ecological risk modelling in developing resources of ecosystems characterized by varying vulnerability levels," Ecological Modelling, Elsevier, vol. 406(C), pages 60-72.
  • Handle: RePEc:eee:ecomod:v:406:y:2019:i:c:p:60-72
    DOI: 10.1016/j.ecolmodel.2019.05.015
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S030438001930211X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2019.05.015?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mukherjee, Joyita & Scharler, Ursula M. & Fath, Brian D. & Ray, Santanu, 2015. "Measuring sensitivity of robustness and network indices for an estuarine food web model under perturbations," Ecological Modelling, Elsevier, vol. 306(C), pages 160-173.
    2. Chen, Shaoqing & Chen, Bin & Fath, Brian D., 2013. "Ecological risk assessment on the system scale: A review of state-of-the-art models and future perspectives," Ecological Modelling, Elsevier, vol. 250(C), pages 25-33.
    3. Wayne G. Landis, 2004. "Ecological Risk Assessment Conceptual Model Formulation for Nonindigenous Species," Risk Analysis, John Wiley & Sons, vol. 24(4), pages 847-858, August.
    4. Fath, Brian D., 2007. "Structural food web regimes," Ecological Modelling, Elsevier, vol. 208(2), pages 391-394.
    5. Christian, Robert R. & Brinson, Mark M. & Dame, James K. & Johnson, Galen & Peterson, Charles H. & Baird, Daniel, 2009. "Ecological network analyses and their use for establishing reference domain in functional assessment of an estuary," Ecological Modelling, Elsevier, vol. 220(22), pages 3113-3122.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Appiah, Michael & Li, Mingxing & Sehrish, Saba & Abaji, Emad Eddin, 2023. "Investigating the connections between innovation, natural resource extraction, and environmental pollution in OECD nations; examining the role of capital formation," Resources Policy, Elsevier, vol. 81(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Borrett, Stuart R. & Sheble, Laura & Moody, James & Anway, Evan C., 2018. "Bibliometric review of ecological network analysis: 2010–2016," Ecological Modelling, Elsevier, vol. 382(C), pages 63-82.
    2. Chen, Shaoqing & Chen, Bin & Fath, Brian D., 2015. "Assessing the cumulative environmental impact of hydropower construction on river systems based on energy network model," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 78-92.
    3. Tang, P.Z. & Liu, J.Z. & Lu, H.W. & Wang, Z. & He, L., 2017. "Information-based Network Environ Analysis for Ecological Risk Assessment of heavy metals in soils," Ecological Modelling, Elsevier, vol. 344(C), pages 17-28.
    4. Grechi, Laura & Franco, Antonio & Palmeri, Luca & Pivato, Alberto & Barausse, Alberto, 2016. "An ecosystem model of the lower Po river for use in ecological risk assessment of xenobiotics," Ecological Modelling, Elsevier, vol. 332(C), pages 42-58.
    5. Hengrui Zhang & Jianing Zhang & Zhuozhuo Lv & Linjie Yao & Ning Zhang & Qing Zhang, 2023. "Spatio-Temporal Assessment of Landscape Ecological Risk and Associated Drivers: A Case Study of the Yellow River Basin in Inner Mongolia," Land, MDPI, vol. 12(6), pages 1-15, May.
    6. Dai, Jing & Fath, Brian & Chen, Bin, 2012. "Constructing a network of the social-economic consumption system of China using extended exergy analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 4796-4808.
    7. Li Li & Xiaoping Zhou & Lan Yang & Jinglong Duan & Zhuo Zeng, 2022. "Spatio-Temporal Characteristics and Influencing Factors of Ecological Risk in China’s North–South Transition Zone," Sustainability, MDPI, vol. 14(9), pages 1-17, May.
    8. Yang, Jin & Chen, Bin, 2016. "Energy–water nexus of wind power generation systems," Applied Energy, Elsevier, vol. 169(C), pages 1-13.
    9. Andrzej Bialas, 2022. "Towards a Software Tool Supporting Decisions in Planning Heap Revitalization Processes," Sustainability, MDPI, vol. 14(5), pages 1-33, February.
    10. Tianlin Zhai & Jing Wang & Ying Fang & Jingjing Liu & Longyang Huang & Kun Chen & Chenchen Zhao, 2021. "Identification and Prediction of Wetland Ecological Risk in Key Cities of the Yangtze River Economic Belt: From the Perspective of Land Development," Sustainability, MDPI, vol. 13(1), pages 1-17, January.
    11. Borrett, S.R. & Freeze, M.A. & Salas, A.K., 2011. "Equivalence of the realized input and output oriented indirect effects metrics in Ecological Network Analysis," Ecological Modelling, Elsevier, vol. 222(13), pages 2142-2148.
    12. Razieh Doregar Zavareh & Tooraj Dana & Emad Roayaei & Seyed Massoud Monavari & Seyed Ali Jozi, 2022. "The Environmental Risk Assessment of Fire and Explosion in Storage Tanks of Petroleum Products," Sustainability, MDPI, vol. 14(17), pages 1-17, August.
    13. Deehr, Rebecca A. & Luczkovich, Joseph J. & Hart, Kevin J. & Clough, Lisa M. & Johnson, Beverly J. & Johnson, Jeffrey C., 2014. "Using stable isotope analysis to validate effective trophic levels from Ecopath models of areas closed and open to shrimp trawling in Core Sound, NC, USA," Ecological Modelling, Elsevier, vol. 282(C), pages 1-17.
    14. Ali Kharrazi & Brian D. Fath & Harald Katzmair, 2016. "Advancing Empirical Approaches to the Concept of Resilience: A Critical Examination of Panarchy, Ecological Information, and Statistical Evidence," Sustainability, MDPI, vol. 8(9), pages 1-17, September.
    15. Andrzej Białas & Artur Kozłowski, 2024. "Computer-Aided Planning for Land Development of Post-Mining Degraded Areas," Sustainability, MDPI, vol. 16(4), pages 1-30, February.
    16. Huiqing Han & Zhihua Su & Guangbin Yang, 2023. "Variations of Habitat Quality and Ecological Risk and Their Correlations with Landscape Metrics in a Robust Human Disturbed Coastal Region—Case Study: Xinggang Town in Southern China," IJERPH, MDPI, vol. 20(4), pages 1-20, February.
    17. Liu, Yating & Chen, Bin, 2020. "Water-energy scarcity nexus risk in the national trade system based on multiregional input-output and network environ analyses," Applied Energy, Elsevier, vol. 268(C).
    18. Zhang, Yan & Zheng, Hongmei & Fath, Brian D., 2015. "Ecological network analysis of an industrial symbiosis system: A case study of the Shandong Lubei eco-industrial park," Ecological Modelling, Elsevier, vol. 306(C), pages 174-184.
    19. Peng Tian & Jialin Li & Hongbo Gong & Ruiliang Pu & Luodan Cao & Shuyao Shao & Zuoqi Shi & Xiuli Feng & Lijia Wang & Riuqing Liu, 2019. "Research on Land Use Changes and Ecological Risk Assessment in Yongjiang River Basin in Zhejiang Province, China," Sustainability, MDPI, vol. 11(10), pages 1-20, May.
    20. Phillips, Jonathan D., 2011. "Predicting modes of spatial change from state-and-transition models," Ecological Modelling, Elsevier, vol. 222(3), pages 475-484.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:406:y:2019:i:c:p:60-72. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.