IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v12y2023i9p1802-d1242217.html
   My bibliography  Save this article

The Influence of Urban Form on Land Surface Temperature: A Comprehensive Investigation from 2D Urban Land Use and 3D Buildings

Author

Listed:
  • Jinlong Yan

    (School of Resources and Environment, Henan Agricultural University, Zhengzhou 450046, China)

  • Chaohui Yin

    (School of Resources and Environment, Henan Agricultural University, Zhengzhou 450046, China)

  • Zihao An

    (Institute for Transport Studies, Leeds University, Leeds LS2 9JT, UK)

  • Bo Mu

    (School of Resources and Environment, Henan Agricultural University, Zhengzhou 450046, China)

  • Qian Wen

    (School of Resources and Environment, Henan Agricultural University, Zhengzhou 450046, China)

  • Yingchao Li

    (School of Resources and Environment, Henan Agricultural University, Zhengzhou 450046, China)

  • Yali Zhang

    (School of Resources and Environment, Henan Agricultural University, Zhengzhou 450046, China)

  • Weiqiang Chen

    (School of Resources and Environment, Henan Agricultural University, Zhengzhou 450046, China)

  • Ling Wang

    (Party Committee Student Work Department, Henan Agricultural University, Zhengzhou 450046, China)

  • Yang Song

    (School of Humanities, Beijing University of Chinese Medicine, Beijing 100029, China)

Abstract

Urban form plays a critical role in shaping the spatial differentiation of land surface temperature (LST). However, limited research has investigated the underlying driving forces and interactions of multidimensional urban form, specifically considering two-dimensional (2D) urban land use and three-dimensional (3D) buildings, on LST. Furthermore, their multi-scale outcomes remain unclear. Taking the main urban area of Wuhan City as an example, a total of nine indicators—the proportion of administration land (PA), the proportion of commercial land (PB), the proportion of industrial land (PM), the proportion of residential land (PR), the proportion of water area (PE), the building density (BD), the building height (BH), the floor area ratio (FAR), and the sky view factor (SVF)—were selected; this paper used the geographic detector model to investigate the driving force of LST spatial differentiation in winter and summer, as well as the interaction of various influencing factors from a multi-scale perspective. The results showed that (1) the average LST in industrial land was higher than that in commercial land, both in summer and winter. The LST in administration land was higher than that in residential land, while in winter, it is the opposite. (2) The spatial differentiation of summer LST was mainly dominated by 3D buildings, while the spatial differentiation of winter LST was mainly dominated by 2D land use. (3) BD was the leading driving force of LST spatial differentiation in summer, and the interaction between BD and any other indicator showed the most significant explanatory power, which is the same for PM in winter. (4) As scale increased, the explanatory power of 2D urban land use for LST spatial differentiation gradually increased both in winter and summer, while the explanatory power of PE on LST spatial differentiation decreased. The explanatory power of BD, FAR, and SVF on LST spatial differentiation remains basically unchanged. The explanatory power of BH on summer LST spatial differentiation decreases with increasing scale, while the explanatory power of BH on winter LST spatial differentiation remains in a stable state. (5) The interaction among all urban form factors primarily increases as the scale increases, except for the interaction between BH and 2D urban land use in summer, and the interaction between PE and PR in winter. The research can provide scientific decision-making support for the collaborative optimization of multiscale urban forms to improve the urban thermal environment.

Suggested Citation

  • Jinlong Yan & Chaohui Yin & Zihao An & Bo Mu & Qian Wen & Yingchao Li & Yali Zhang & Weiqiang Chen & Ling Wang & Yang Song, 2023. "The Influence of Urban Form on Land Surface Temperature: A Comprehensive Investigation from 2D Urban Land Use and 3D Buildings," Land, MDPI, vol. 12(9), pages 1-18, September.
  • Handle: RePEc:gam:jlands:v:12:y:2023:i:9:p:1802-:d:1242217
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/12/9/1802/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/12/9/1802/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Paolo Semenzato & Lucia Bortolini, 2023. "Urban Heat Island Mitigation and Urban Green Spaces: Testing a Model in the City of Padova (Italy)," Land, MDPI, vol. 12(2), pages 1-13, February.
    2. Sihang Gao & Qingming Zhan & Chen Yang & Huimin Liu, 2020. "The Diversified Impacts of Urban Morphology on Land Surface Temperature among Urban Functional Zones," IJERPH, MDPI, vol. 17(24), pages 1-20, December.
    3. Rui Zhu & Xijia Dong & Man Sing Wong, 2022. "Estimation of the Urban Heat Island Effect in a Reformed Urban District: A Scenario-Based Study in Hong Kong," Sustainability, MDPI, vol. 14(8), pages 1-21, April.
    4. Abdullah Addas, 2023. "Machine Learning Techniques to Map the Impact of Urban Heat Island: Investigating the City of Jeddah," Land, MDPI, vol. 12(6), pages 1-14, May.
    5. Zahra Mokhtari & Shahindokht Barghjelveh & Romina Sayahnia & Salman Qureshi & Alessio Russo, 2022. "Dynamic and Heterogeneity of Urban Heat Island: A Theoretical Framework in the Context of Urban Ecology," Land, MDPI, vol. 11(8), pages 1-17, July.
    6. Yunfei Li & Sebastian Schubert & Jürgen P. Kropp & Diego Rybski, 2020. "On the influence of density and morphology on the Urban Heat Island intensity," Nature Communications, Nature, vol. 11(1), pages 1-9, December.
    7. Youpeng Lu & Wenze Yue & Yaping Huang, 2021. "Effects of Land Use on Land Surface Temperature: A Case Study of Wuhan, China," IJERPH, MDPI, vol. 18(19), pages 1-18, September.
    8. Ayat Elkhazindar & Sahar N. Kharrufa & Mohammad S. Arar, 2022. "The Effect of Urban Form on the Heat Island Phenomenon and Human Thermal Comfort: A Comparative Study of UAE Residential Sites," Energies, MDPI, vol. 15(15), pages 1-31, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Aman Gupta & Bhaskar De & Anoop Kumar Shukla & Gloria Pignatta, 2024. "Vulnerability Assessment of a Highly Populated Megacity to Ambient Thermal Stress," Sustainability, MDPI, vol. 16(8), pages 1-21, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alessio Russo & Giuseppe T. Cirella, 2023. "Urban Ecosystem Services: Advancements in Urban Green Development," Land, MDPI, vol. 12(3), pages 1-4, February.
    2. Qi Fu & Mengfan Gao & Yue Wang & Tinghui Wang & Xu Bi & Jinhua Chen, 2022. "Spatiotemporal Patterns and Drivers of the Carbon Budget in the Yangtze River Delta Region, China," Land, MDPI, vol. 11(8), pages 1-18, August.
    3. Zherong Wu & Xinyang Zhang & Peifeng Ma & Mei-Po Kwan & Yang Liu, 2023. "How Did Urban Environmental Characteristics Influence Land Surface Temperature in Hong Kong from 2017 to 2022? Evidence from Remote Sensing and Land Use Data," Sustainability, MDPI, vol. 15(21), pages 1-26, November.
    4. Rakin Abrar & Showmitra Kumar Sarkar & Kashfia Tasnim Nishtha & Swapan Talukdar & Shahfahad & Atiqur Rahman & Abu Reza Md Towfiqul Islam & Amir Mosavi, 2022. "Assessing the Spatial Mapping of Heat Vulnerability under Urban Heat Island (UHI) Effect in the Dhaka Metropolitan Area," Sustainability, MDPI, vol. 14(9), pages 1-24, April.
    5. Ömer Ünsal & Aynaz Lotfata & Sedat Avcı, 2023. "Exploring the Relationships between Land Surface Temperature and Its Influencing Determinants Using Local Spatial Modeling," Sustainability, MDPI, vol. 15(15), pages 1-26, July.
    6. Zidong Zhao & Ruhai Ye & Yingyin Wang & Yiming Tao, 2022. "How Plot Spatial Morphology Drives Surface Thermal Environment: A Spatial and Temporal Analysis of Nanjing Main City," Sustainability, MDPI, vol. 15(1), pages 1-26, December.
    7. Hua Shi & George Xian & Roger Auch & Kevin Gallo & Qiang Zhou, 2021. "Urban Heat Island and Its Regional Impacts Using Remotely Sensed Thermal Data—A Review of Recent Developments and Methodology," Land, MDPI, vol. 10(8), pages 1-30, August.
    8. João Monteiro & Nuno Sousa & João Coutinho-Rodrigues & Eduardo Natividade-Jesus, 2024. "Challenges Ahead for Sustainable Cities: An Urban Form and Transport System Review," Energies, MDPI, vol. 17(2), pages 1-26, January.
    9. Jeemin Youn & Hyungkyoo Kim & Jaekyung Lee, 2023. "Relationships between Thermal Environment and Air Pollution of Seoul’s 25 Districts Using Vector Autoregressive Granger Causality," Sustainability, MDPI, vol. 15(23), pages 1-22, November.
    10. Fei He & Luyun Liu & Yu Huang & Komi Bernard Bedra & Minhuan Zhang, 2023. "Investigating the Spatial Heterogeneity of Urban Heat Island Responses to Climate Change Based on Local Climate Zones," Sustainability, MDPI, vol. 15(7), pages 1-19, April.
    11. Chiatti, Chiara & Fabiani, Claudia & Bondi, Roberto & Zampini, Giulia & Latterini, Loredana & Pisello, Anna Laura, 2023. "Controlled combination of phosphorescent and fluorescent materials to exploit energy-saving potential in the built environment," Energy, Elsevier, vol. 275(C).
    12. Jie Yin & Qingming Zhan & Muhammad Tayyab & Aqeela Zahra, 2021. "The Ventilation Efficiency of Urban Built Intensity and Ventilation Path Identification: A Case Study of Wuhan," IJERPH, MDPI, vol. 18(21), pages 1-16, November.
    13. Suiping Zeng & Jiahao Zhang & Jian Tian, 2023. "Analysis and Optimization of Thermal Environment in Old Urban Areas from the Perspective of “Function–Form” Differentiation," Sustainability, MDPI, vol. 15(7), pages 1-23, April.
    14. Kailin Shang & Linfeng Xu & Xuan Liu & Zhengtong Yin & Zhixin Liu & Xiaolu Li & Lirong Yin & Wenfeng Zheng, 2023. "Study of Urban Heat Island Effect in Hangzhou Metropolitan Area Based on SW-TES Algorithm and Image Dichotomous Model," SAGE Open, , vol. 13(4), pages 21582440231, November.
    15. Lina Tang & Alimujiang Kasimu & Haitao Ma & Mamattursun Eziz, 2023. "Monitoring Multi-Scale Ecological Change and Its Potential Drivers in the Economic Zone of the Tianshan Mountains’ Northern Slopes, Xinjiang, China," IJERPH, MDPI, vol. 20(4), pages 1-20, February.
    16. Yang Zhang & Chao Zhang & Kun Yang & Zongqi Peng & Linfeng Tang & Haimei Duan & Changhao Wu & Yi Luo, 2022. "Temporal and Spatial Effects of Urbanization on Regional Thermal Comfort," Land, MDPI, vol. 11(5), pages 1-19, May.
    17. Michael Strobel & Uli Jakob & Wolfgang Streicher & Daniel Neyer, 2023. "Spatial Distribution of Future Demand for Space Cooling Applications and Potential of Solar Thermal Cooling Systems," Sustainability, MDPI, vol. 15(12), pages 1-32, June.
    18. Paras Sidiqui & Muhammad Atiq Ur Rehman Tariq & Anne W. M. Ng, 2022. "An Investigation to Identify the Effectiveness of Socioeconomic, Demographic, and Buildings’ Characteristics on Surface Urban Heat Island Patterns," Sustainability, MDPI, vol. 14(5), pages 1-21, February.
    19. Jing Kong & Yongling Zhao & Jan Carmeliet & Chengwang Lei, 2021. "Urban Heat Island and Its Interaction with Heatwaves: A Review of Studies on Mesoscale," Sustainability, MDPI, vol. 13(19), pages 1-26, September.
    20. Youpeng Lu & Wenze Yue & Yaping Huang, 2021. "Effects of Land Use on Land Surface Temperature: A Case Study of Wuhan, China," IJERPH, MDPI, vol. 18(19), pages 1-18, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:12:y:2023:i:9:p:1802-:d:1242217. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.