IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v12y2023i7p1378-d1190480.html
   My bibliography  Save this article

A Spatiotemporal Analysis of Ecological–Economic Coupling Coordination in the Chengdu–Chongqing Urban Agglomeration

Author

Listed:
  • Xindong He

    (College of Tourism and Urban-Rural Planning, Chengdu University of Technology, Chengdu 610059, China)

  • Linhong Wu

    (Department of Civil & Environmental Engineering, National University of Singapore, Singapore 119077, Singapore)

  • Guoqiang Shen

    (Deptartment of Regional and City Planning, College of Architecture and Civil Engineering, Zhejiang University, Hangzhou 310058, China)

  • Xingfan Peng

    (Deptartment of Chemical Engineering, University College London, London WC1E 6BT, UK)

  • Lei Huang

    (College of Tourism and Urban-Rural Planning, Chengdu University of Technology, Chengdu 610059, China)

Abstract

The quick and reliable quantification of the relationship between ecosystem and economic system is important in policymaking for sustainable urban agglomerations facing enormous pressure from high population density and development intensity. This is especially true in China, where urban agglomeration has been part of the country’s strategy for reform, modernization, and urbanization. This study applied the coupling coordination degree (CCD) model to assess the coupling coordination relationships between the ecosystem and economic system at the county level for the Chengdu–Chongqing agglomeration for the period of 2005–2019, and then, the local indicator of spatial association analysis (LISA) was used to illustrate the spatial distribution of CCDs further, hoping to capture the spatiotemporal dynamics of CCDs. The results found that (1) fringe counties and districts in the urban agglomeration were on the brink of ecological–economic disorder with low CCDs, (2) urbanized areas near Chongqing coordinated well with high CCDs, and (3) sound spatial governance and territorial planning may be better achieved by using the county-level unit than the city-level unit.

Suggested Citation

  • Xindong He & Linhong Wu & Guoqiang Shen & Xingfan Peng & Lei Huang, 2023. "A Spatiotemporal Analysis of Ecological–Economic Coupling Coordination in the Chengdu–Chongqing Urban Agglomeration," Land, MDPI, vol. 12(7), pages 1-20, July.
  • Handle: RePEc:gam:jlands:v:12:y:2023:i:7:p:1378-:d:1190480
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/12/7/1378/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/12/7/1378/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Gene M. Grossman & Alan B. Krueger, 1995. "Economic Growth and the Environment," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 110(2), pages 353-377.
    2. Zhang, Qian & Shen, Juqin & Sun, Fuhua, 2021. "Spatiotemporal differentiation of coupling coordination degree between economic development and water environment and its influencing factors using GWR in China's province," Ecological Modelling, Elsevier, vol. 462(C).
    3. Jean-Yves Heurtebise, 2017. "Sustainability and Ecological Civilization in the Age of Anthropocene: An Epistemological Analysis of the Psychosocial and “Culturalist” Interpretations of Global Environmental Risks," Sustainability, MDPI, vol. 9(8), pages 1-17, August.
    4. Lange, Oskar, 1970. "Introduction to Economic Cybernetics," Elsevier Monographs, Elsevier, edition 1, number 9780080066523.
    5. Michael Jerrett, 2015. "The death toll from air-pollution sources," Nature, Nature, vol. 525(7569), pages 330-331, September.
    6. Xindong He & Xianmin Mai & Guoqiang Shen, 2019. "Delineation of Urban Growth Boundaries with SD and CLUE-s Models under Multi-Scenarios in Chengdu Metropolitan Area," Sustainability, MDPI, vol. 11(21), pages 1-13, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Binghao Sun & Xinlan Liang & Bingchang Li & Jiahao Liu & Lingfeng Wu & Yizhang Liu, 2025. "Spatiotemporal Evolution and Optimization of Urbanization–Water Environment Coupling in the Cheng-Yu Region," Land, MDPI, vol. 14(2), pages 1-23, February.
    2. Hong Shi & Ji Yang & Qijuan Liu & Taohong Li & Ning Chris Chen, 2024. "Impacts of Climate and Land-Use Change on Fraction Vegetation Coverage Based on PLUS-Dimidiate Pixel Model," Sustainability, MDPI, vol. 16(23), pages 1-18, November.
    3. Xue Zhou & Jiapeng Wang, 2023. "Evaluation and Differentiation Analysis of China’s Construction of Ecological Civilization from the Perspective of Collaboration: Using China’s Representative Region as an Example," Sustainability, MDPI, vol. 15(18), pages 1-28, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhongwu Zhang & Huimin Li & Yongjian Cao, 2022. "Research on the Coordinated Development of Economic Development and Ecological Environment of Nine Provinces (Regions) in the Yellow River Basin," Sustainability, MDPI, vol. 14(20), pages 1-14, October.
    2. Fatima Zahra Moussaid & Hikma Bachegour & Mounir Jerry & Ahlam Qafas, 2025. "Probing the asymmetric impact of clean energy technologies on environmental quality: testing load capacity curve hypothesis in Spain," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 27(2), pages 4425-4444, February.
    3. Fujii, Hidemichi & Managi, Shunsuke, 2013. "Which industry is greener? An empirical study of nine industries in OECD countries," Energy Policy, Elsevier, vol. 57(C), pages 381-388.
    4. Muhammad Shahbaz & Vassilios G. Papavassiliou & Amine Lahiani & David Roubaud, 2023. "Are we moving towards decarbonisation of the global economy? Lessons from the distant past to the present," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 28(3), pages 2620-2634, July.
    5. Paul Welfens & Jens Perret & Deniz Erdem, 2010. "Global economic sustainability indicator: analysis and policy options for the Copenhagen process," International Economics and Economic Policy, Springer, vol. 7(2), pages 153-185, August.
    6. Yan, Sen & Sun, Xinyu & Zhang, Yurong, 2024. "High-speed railway ripples on the greenness: Insight from urban green vegetation cover," Transportation Research Part A: Policy and Practice, Elsevier, vol. 179(C).
    7. Herrendorf, Berthold & Rogerson, Richard & Valentinyi, Ákos, 2014. "Growth and Structural Transformation," Handbook of Economic Growth, in: Philippe Aghion & Steven Durlauf (ed.), Handbook of Economic Growth, edition 1, volume 2, chapter 6, pages 855-941, Elsevier.
    8. Caillavet, France & Fadhuile, Adélaïde & Nichèle, Véronique, 2019. "Assessing the distributional effects of carbon taxes on food: Inequalities and nutritional insights in France," Ecological Economics, Elsevier, vol. 163(C), pages 20-31.
    9. Sebri, Maamar, 2009. "La Zone Méditerranéenne Face à la Pollution de L’air : Une Investigation Econométrique [The Mediterranean Zone in front of Air pollution: an Econometric Investigation]," MPRA Paper 32382, University Library of Munich, Germany.
    10. G. Mythili & Shibashis Mukherjee, 2011. "Examining Environmental Kuznets Curve for river effluents in India," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 13(3), pages 627-640, June.
    11. Raffin, Natacha & Seegmuller, Thomas, 2014. "Longevity, pollution and growth," Mathematical Social Sciences, Elsevier, vol. 69(C), pages 22-33.
    12. Yuping Deng & Helian Xu, 2015. "International Direct Investment and Transboundary Pollution: An Empirical Analysis of Complex Networks," Sustainability, MDPI, vol. 7(4), pages 1-25, April.
    13. Muhammad Shahbaz & Syed Jawad Hussain Shahzad & Mantu Kumar Mahalik & Perry Sadorsky, 2018. "How strong is the causal relationship between globalization and energy consumption in developed economies? A country-specific time-series and panel analysis," Applied Economics, Taylor & Francis Journals, vol. 50(13), pages 1479-1494, March.
    14. Bernardo Mueller, 2011. "The Fiscal Imperativeand the Role of Public Prosecutors in Brazilian Environmental Policy," Anais do XXXVII Encontro Nacional de Economia [Proceedings of the 37th Brazilian Economics Meeting] 184, ANPEC - Associação Nacional dos Centros de Pós-Graduação em Economia [Brazilian Association of Graduate Programs in Economics].
    15. George Halkos & Iacovos Psarianos, 2016. "Exploring the effect of including the environment in the neoclassical growth model," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 18(3), pages 339-358, July.
    16. Dong, Kangyin & Sun, Renjin & Li, Hui & Liao, Hua, 2018. "Does natural gas consumption mitigate CO2 emissions: Testing the environmental Kuznets curve hypothesis for 14 Asia-Pacific countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 419-429.
    17. Daniel Fiorino, 2011. "Explaining national environmental performance: approaches, evidence, and implications," Policy Sciences, Springer;Society of Policy Sciences, vol. 44(4), pages 367-389, November.
    18. Carmen van der Merwe & Martin de Wit, 2021. "An In-Depth Investigation into the Relationship Between Municipal Solid Waste Generation and Economic Growth in the City of Cape Town," Working Papers 07/2021, Stellenbosch University, Department of Economics, revised 2021.
    19. Tobias Böhmelt & Jürg Vollenweider, 2015. "Information flows and social capital through linkages: the effectiveness of the CLRTAP network," International Environmental Agreements: Politics, Law and Economics, Springer, vol. 15(2), pages 105-123, May.
    20. Mazzanti, Massimiliano & Montini, Anna & Zoboli, Roberto, 2006. "Municipal Waste Production, Economic Drivers, and 'New' Waste Policies: EKC Evidence from Italian Regional and Provincial Panel Data," Climate Change Modelling and Policy Working Papers 12053, Fondazione Eni Enrico Mattei (FEEM).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:12:y:2023:i:7:p:1378-:d:1190480. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.