IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v11y2022i7p1012-d855104.html
   My bibliography  Save this article

Ecosystem Service Responses to Land Use Change in Southern Guangzhou—The Practice of Applying Natural Resources Integrated Database for Research

Author

Listed:
  • Yinglong Hu

    (Land Resource Technology Center of Guangdong Province, Guangzhou 510062, China
    School of Geography and Remote Sensing, Guangzhou University, Guangzhou 510006, China)

  • Xinxiang Chen

    (Land Resource Technology Center of Guangdong Province, Guangzhou 510062, China)

  • Guoliang Zhao

    (Beijing GEOWAY Software Co., Ltd., Beijing 100043, China)

  • Xuejun Liu

    (Land Resource Technology Center of Guangdong Province, Guangzhou 510062, China)

  • Jian Yu

    (Land Resource Technology Center of Guangdong Province, Guangzhou 510062, China)

  • Min Li

    (Land Resource Technology Center of Guangdong Province, Guangzhou 510062, China)

  • Yang Liu

    (Land Resource Technology Center of Guangdong Province, Guangzhou 510062, China)

  • Xiaotong Hu

    (Land Resource Technology Center of Guangdong Province, Guangzhou 510062, China)

  • Rui Zhong

    (Land Resource Technology Center of Guangdong Province, Guangzhou 510062, China)

  • Yingbiao Chen

    (School of Geography and Remote Sensing, Guangzhou University, Guangzhou 510006, China)

Abstract

Based on the equivalent factor table of terrestrial ESV in China in 2010, this paper proposes a regionalized and interannual ESV correction method. Taking southern Guangzhou as the study area, which is located in the geometric center of the Guangdong–Hong Kong–Macao Greater Bay Area (GHM GBA), this study evaluated the ecosystem service equivalent value (ESEV) and ecosystem service value (ESV) and their changes in 2004, 2010 and 2016 and carried out grid processing, trend analysis and global/local spatial autocorrelation of the ecosystem service density (ESD) in the study area by using the Natural Resources Integrated Database of Guangdong Province (NRIDB). The results of data processing and spatial analysis computed in this study were published as Web services through the NRIDB and displayed in the visualization front-end. The results showed that (1) during 2004–2016, the urbanization process in the study area led to the expansion of built-up land, which occupied a large amount of ecological land and resulted in a decreasing trend of ESV. (2) Benefiting from socioeconomic development, the standard value volume of the ESEV ( D value) kept increasing, which resulted in an increasing trend for the total ESV. (3) The spatial autocorrelation analysis results of ESD indicated that the spatial distribution of ESD in the study area had strong spatial agglomeration and positive spatial correlation. With the progress of urbanization and increases in research scale and interval distance, the spatial difference in ESD became larger over time. The research results provide a reference for the coordinated allocation of natural resources and environmental protection in the GHM GBA.

Suggested Citation

  • Yinglong Hu & Xinxiang Chen & Guoliang Zhao & Xuejun Liu & Jian Yu & Min Li & Yang Liu & Xiaotong Hu & Rui Zhong & Yingbiao Chen, 2022. "Ecosystem Service Responses to Land Use Change in Southern Guangzhou—The Practice of Applying Natural Resources Integrated Database for Research," Land, MDPI, vol. 11(7), pages 1-27, July.
  • Handle: RePEc:gam:jlands:v:11:y:2022:i:7:p:1012-:d:855104
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/11/7/1012/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/11/7/1012/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zhao, Mingyue & Peng, Jian & Liu, Yuanxin & Li, Tianyi & Wang, Yanglin, 2018. "Mapping Watershed-Level Ecosystem Service Bundles in the Pearl River Delta, China," Ecological Economics, Elsevier, vol. 152(C), pages 106-117.
    2. Getis, Arthur, 2007. "Reflections on spatial autocorrelation," Regional Science and Urban Economics, Elsevier, vol. 37(4), pages 491-496, July.
    3. Wainger, Lisa A. & King, Dennis M. & Mack, Richard N. & Price, Elizabeth W. & Maslin, Thomas, 2010. "Can the concept of ecosystem services be practically applied to improve natural resource management decisions?," Ecological Economics, Elsevier, vol. 69(5), pages 978-987, March.
    4. Limburg, Karin E. & O'Neill, Robert V. & Costanza, Robert & Farber, Stephen, 2002. "Complex systems and valuation," Ecological Economics, Elsevier, vol. 41(3), pages 409-420, June.
    5. Luminda Gunawardhana & So Kazama & Saeki Kawagoe, 2011. "Impact of Urbanization and Climate Change on Aquifer Thermal Regimes," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(13), pages 3247-3276, October.
    6. Liu, Yong & Li, Jinchang & Zhang, Hong, 2012. "An ecosystem service valuation of land use change in Taiyuan City, China," Ecological Modelling, Elsevier, vol. 225(C), pages 127-132.
    7. Egoh, Benis & Rouget, Mathieu & Reyers, Belinda & Knight, Andrew T. & Cowling, Richard M. & van Jaarsveld, Albert S. & Welz, Adam, 2007. "Integrating ecosystem services into conservation assessments: A review," Ecological Economics, Elsevier, vol. 63(4), pages 714-721, September.
    8. Tianhong, Li & Wenkai, Li & Zhenghan, Qian, 2010. "Variations in ecosystem service value in response to land use changes in Shenzhen," Ecological Economics, Elsevier, vol. 69(7), pages 1427-1435, May.
    9. Sergio Rey & Alan Murray & Luc Anselin, 2011. "Visualizing regional income distribution dynamics," Letters in Spatial and Resource Sciences, Springer, vol. 4(1), pages 81-90, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rongtian Zhang, 2022. "Spatial Differentiation and Tradeoff–Synergy of Rural Multifunction at the County Scale in Anhui Province in the China’s Traditional Agricultural Areas," IJERPH, MDPI, vol. 19(20), pages 1-15, October.
    2. Qikang Zhong & Zhe Li & Yujing He, 2023. "Coupling Evaluation and Spatial–Temporal Evolution of Land Ecosystem Services and Economic–Social Development in a City Group: The Case Study of the Chengdu–Chongqing City Group," IJERPH, MDPI, vol. 20(6), pages 1-29, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. De Vos, A. & Cumming, G.S. & Roux, D.J., 2017. "The relevance of cross-scale connections and spatial interactions for ecosystem service delivery by protected areas: Insights from southern Africa," Ecosystem Services, Elsevier, vol. 28(PB), pages 133-139.
    2. Shuangao Wang & Rajchandar Padmanaban & Mohamed Shamsudeen & Felipe S. Campos & Pedro Cabral, 2022. "Landscape Impacts on Ecosystem Service Values Using the Image Fusion Approach," Land, MDPI, vol. 11(8), pages 1-18, July.
    3. Kontogianni, Areti & Luck, Gary W. & Skourtos, Michalis, 2010. "Valuing ecosystem services on the basis of service-providing units: A potential approach to address the 'endpoint problem' and improve stated preference methods," Ecological Economics, Elsevier, vol. 69(7), pages 1479-1487, May.
    4. Yun Jiang & Guoming Du & Hao Teng & Jun Wang & Haolin Li, 2023. "Multi-Scenario Land Use Change Simulation and Spatial Response of Ecosystem Service Value in Black Soil Region of Northeast China," Land, MDPI, vol. 12(5), pages 1-21, April.
    5. Eshetu Yirsaw & Wei Wu & Xiaoping Shi & Habtamu Temesgen & Belew Bekele, 2017. "Land Use/Land Cover Change Modeling and the Prediction of Subsequent Changes in Ecosystem Service Values in a Coastal Area of China, the Su-Xi-Chang Region," Sustainability, MDPI, vol. 9(7), pages 1-17, July.
    6. Quanfeng Li & Lu Wang & Guoming Du & Bonoua Faye & Yunkai Li & Jicheng Li & Wei Liu & Shijin Qu, 2022. "Dynamic Variation of Ecosystem Services Value under Land Use/Cover Change in the Black Soil Region of Northeastern China," IJERPH, MDPI, vol. 19(12), pages 1-18, June.
    7. Chaolei Yang & Jingyuan Li & Shuwen Jiang & Yufeng Tian & Canfeng Li & Wantao Yang & Haichuan Duan & Zong Wei & Yong Huang, 2024. "The Impacts of Land-Use Changes on Ecosystem Service Value in the Yunnan–Kweichow Plateau, China," Sustainability, MDPI, vol. 16(3), pages 1-24, January.
    8. Fisher, Brendan & Turner, R. Kerry & Morling, Paul, 2009. "Defining and classifying ecosystem services for decision making," Ecological Economics, Elsevier, vol. 68(3), pages 643-653, January.
    9. Aijun Guo & Yongnian Zhang & Fanglei Zhong & Daiwei Jiang, 2020. "Spatiotemporal Patterns of Ecosystem Service Value Changes and Their Coordination with Economic Development: A Case Study of the Yellow River Basin, China," IJERPH, MDPI, vol. 17(22), pages 1-17, November.
    10. Xie, Gaodi & Zhang, Caixia & Zhen, Lin & Zhang, Leiming, 2017. "Dynamic changes in the value of China’s ecosystem services," Ecosystem Services, Elsevier, vol. 26(PA), pages 146-154.
    11. Yanjun Tong & Jun Lei & Shubao Zhang & Xiaolei Zhang & Tianyu Rong & Liqin Fan & Zuliang Duan, 2023. "Analysis of the Spatial and Temporal Variability and Factors Influencing the Ecological Resilience in the Urban Agglomeration on the Northern Slope of Tianshan Mountain," Sustainability, MDPI, vol. 15(6), pages 1-20, March.
    12. Raju Rai & Yili Zhang & Basanta Paudel & Bipin Kumar Acharya & Laxmi Basnet, 2018. "Land Use and Land Cover Dynamics and Assessing the Ecosystem Service Values in the Trans-Boundary Gandaki River Basin, Central Himalayas," Sustainability, MDPI, vol. 10(9), pages 1-22, August.
    13. Ming Lu & Yan Zhang & Fan Liang & Yuanxiang Wu, 2022. "Spatial Relationship between Land Use Patterns and Ecosystem Services Value—Case Study of Nanjing," Land, MDPI, vol. 11(8), pages 1-19, July.
    14. Maggie G. Munthali & Mengistie Kindu & Abiodun M. Adeola & Nerhene Davis & Joel O. Botai & Negasi Solomon, 2023. "Variations of ecosystem service values as a response to land use and land cover dynamics in central malawi," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(9), pages 9821-9837, September.
    15. Yajing Shao & Xuefeng Yuan & Chaoqun Ma & Ruifang Ma & Zhaoxia Ren, 2020. "Quantifying the Spatial Association between Land Use Change and Ecosystem Services Value: A Case Study in Xi’an, China," Sustainability, MDPI, vol. 12(11), pages 1-20, May.
    16. Ann Hartell, 2015. "Sprawl and Commuting: Exploring New Measures of United States Metro Regions," SRE-Disc sre-disc-2015_07, Institute for Multilevel Governance and Development, Department of Socioeconomics, Vienna University of Economics and Business.
    17. Wu, Yongjiao & Dong, Suocheng & Huang, Haosheng & Zhai, Jun & Li, Yu & Huang, Dingxuan, 2018. "Quantifying urban land expansion dynamics through improved land management institution model: Application in Ningxia-Inner Mongolia, China," Land Use Policy, Elsevier, vol. 78(C), pages 386-396.
    18. Tan Li & Qingguo Zhang & Ying Zhang, 2018. "Modelling a Compensation Standard for a Regional Forest Ecosystem: A Case Study in Yanqing District, Beijing, China," IJERPH, MDPI, vol. 15(4), pages 1-20, March.
    19. Nikodinoska, Natasha & Paletto, Alessandro & Pastorella, Fabio & Granvik, Madeleine & Franzese, Pier Paolo, 2018. "Assessing, valuing and mapping ecosystem services at city level: The case of Uppsala (Sweden)," Ecological Modelling, Elsevier, vol. 368(C), pages 411-424.
    20. Hui Wen & Jiquan Chen & Zhifang Wang, 2020. "Disproportioned Performances of Protected Areas in the Beijing-Tianjin-Hebei Region," Sustainability, MDPI, vol. 12(16), pages 1-15, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:11:y:2022:i:7:p:1012-:d:855104. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.