IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v11y2022i8p1186-d874944.html
   My bibliography  Save this article

Landscape Impacts on Ecosystem Service Values Using the Image Fusion Approach

Author

Listed:
  • Shuangao Wang

    (School of Economic Management, Beijing City University, No. 269, North 4th Ring Middle Road, Haidian District, Beijing 100083, China
    Beijing Academy of Science and Technology, No. 27, Beike Building, Haidian District, Beijing 100089, China
    NOVA Information Management School (NOVA IMS), Campus de Campolide, Universidade Nova de Lisboa, 1070-312 Lisboa, Portugal)

  • Rajchandar Padmanaban

    (Centre of Geographic Studies, Institute of Geography and Spatial Planning, University of Lisbon, Rua Branca Edmée Marques, 1600-276 Lisbon, Portugal)

  • Mohamed Shamsudeen

    (NOVA Information Management School (NOVA IMS), Campus de Campolide, Universidade Nova de Lisboa, 1070-312 Lisboa, Portugal
    Institute for Geoinformatics (IFGI), University of Münster, Heisenbergstraße 2, 48149 Münster, Germany)

  • Felipe S. Campos

    (NOVA Information Management School (NOVA IMS), Campus de Campolide, Universidade Nova de Lisboa, 1070-312 Lisboa, Portugal)

  • Pedro Cabral

    (NOVA Information Management School (NOVA IMS), Campus de Campolide, Universidade Nova de Lisboa, 1070-312 Lisboa, Portugal)

Abstract

The landscape is a complex mosaic of physical and biological patches with infrastructures, cultivable lands, protected ecosystems, water bodies, and many other landforms. Varying land-use changes are vulnerable to the world and need the mitigation and management of landforms to achieve sustainable development, which without proper oversight, may lead to habitat destruction, degradation, and fragmentation. In this study, we quantify the land-use and land-cover (LULC) changes using downscaled satellite imagery and assess their effects on ecosystem services (ES) and economic values in Ningxia Province, China. Various landscape metrics are derived to study the pattern and spatial configuration over 15 years (2005–2020), in which the landscapes are evolving. The impact of LULC change in various ES is analyzed using ecosystem service values (ESV) and validated with a sensitivity index. Finally, the level of urban sprawl (US) due to overpopulation is established using Renyi’s entropy. Using Landsat 8′s Operational Land Imager (OLI) datasets, we downscaled the MODIS data of 2005, 2010, 2015, and 2020 to prepare the LULC map through a rotation forest algorithm. Results demonstrate that water bodies, woodlands, and built-up landscapes increased in their spatial distribution over time and that there was a decrease in farmlands. Results further suggest that the connectivity and uniformity of the landscape pattern improved in the later period due to several plans formulated by the government with a slight improvement in landscape diversity. Overall ESV get improved, while LULC classes such as farmland and water bodies have decreased and increased ESV, respectively, and a sensitivity analysis is used to test the reliability of ESV on LULC classes. The level of US is 0.91 in terms of Renyi’s entropy, which reveals the presence of a dispersion of settlements in urban fringes. The simulated US for 2025 shows urbanization is more severe over a prolonged time and finally the impacts of the US in ESV are analyzed. Using an interdisciplinary approach, several recommendations are formulated to maintain the ESV despite rapid LULC changes and to achieve sustainable development globally.

Suggested Citation

  • Shuangao Wang & Rajchandar Padmanaban & Mohamed Shamsudeen & Felipe S. Campos & Pedro Cabral, 2022. "Landscape Impacts on Ecosystem Service Values Using the Image Fusion Approach," Land, MDPI, vol. 11(8), pages 1-18, July.
  • Handle: RePEc:gam:jlands:v:11:y:2022:i:8:p:1186-:d:874944
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/11/8/1186/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/11/8/1186/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Chunping Tan & Jianping Yang & Xiaoming Wang & Dahe Qin & Bo Huang & Hongju Chen, 2020. "Drought disaster risks under CMIP5 RCP scenarios in Ningxia Hui Autonomous Region, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 100(3), pages 909-931, February.
    2. Shanshan Guo & Yinghong Wang & Huping Hou & Changyue Wu & Jing Yang & Wei He & Lan Xiang, 2020. "Natural Capital Evolution and Driving Forces in Energy-Rich and Ecologically Fragile Regions: A Case Study of Ningxia Province, China," Sustainability, MDPI, vol. 12(2), pages 1-16, January.
    3. Vishal Chettry & Meenal Surawar, 2021. "Assessment of urban sprawl characteristics in Indian cities using remote sensing: case studies of Patna, Ranchi, and Srinagar," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(8), pages 11913-11935, August.
    4. Jiali Wan & Yanfang Liu & Yiyun Chen & Jiameng Hu & Zhengyu Wang, 2018. "A Tale of North and South: Balanced and Sustainable Development of Primary Education in Ningxia, China," Sustainability, MDPI, vol. 10(2), pages 1-16, February.
    5. Liu, Yong & Li, Jinchang & Zhang, Hong, 2012. "An ecosystem service valuation of land use change in Taiyuan City, China," Ecological Modelling, Elsevier, vol. 225(C), pages 127-132.
    6. Zhang, Qi & Bilsborrow, Richard E. & Song, Conghe & Tao, Shiqi & Huang, Qingfeng, 2019. "Rural household income distribution and inequality in China: Effects of payments for ecosystem services policies and other factors," Ecological Economics, Elsevier, vol. 160(C), pages 114-127.
    7. Tianhong, Li & Wenkai, Li & Zhenghan, Qian, 2010. "Variations in ecosystem service value in response to land use changes in Shenzhen," Ecological Economics, Elsevier, vol. 69(7), pages 1427-1435, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Andrea Cristina Ramirez Herrera & Sonja Bauer & Victor Peña Guillen, 2022. "Water-Sensitive Urban Plan for Lima Metropolitan Area (Peru) Based on Changes in the Urban Landscape from 1990 to 2021," Land, MDPI, vol. 11(12), pages 1-20, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Eshetu Yirsaw & Wei Wu & Xiaoping Shi & Habtamu Temesgen & Belew Bekele, 2017. "Land Use/Land Cover Change Modeling and the Prediction of Subsequent Changes in Ecosystem Service Values in a Coastal Area of China, the Su-Xi-Chang Region," Sustainability, MDPI, vol. 9(7), pages 1-17, July.
    2. Quanfeng Li & Lu Wang & Guoming Du & Bonoua Faye & Yunkai Li & Jicheng Li & Wei Liu & Shijin Qu, 2022. "Dynamic Variation of Ecosystem Services Value under Land Use/Cover Change in the Black Soil Region of Northeastern China," IJERPH, MDPI, vol. 19(12), pages 1-18, June.
    3. Aijun Guo & Yongnian Zhang & Fanglei Zhong & Daiwei Jiang, 2020. "Spatiotemporal Patterns of Ecosystem Service Value Changes and Their Coordination with Economic Development: A Case Study of the Yellow River Basin, China," IJERPH, MDPI, vol. 17(22), pages 1-17, November.
    4. Raju Rai & Yili Zhang & Basanta Paudel & Bipin Kumar Acharya & Laxmi Basnet, 2018. "Land Use and Land Cover Dynamics and Assessing the Ecosystem Service Values in the Trans-Boundary Gandaki River Basin, Central Himalayas," Sustainability, MDPI, vol. 10(9), pages 1-22, August.
    5. Maggie G. Munthali & Mengistie Kindu & Abiodun M. Adeola & Nerhene Davis & Joel O. Botai & Negasi Solomon, 2023. "Variations of ecosystem service values as a response to land use and land cover dynamics in central malawi," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(9), pages 9821-9837, September.
    6. Yinglong Hu & Xinxiang Chen & Guoliang Zhao & Xuejun Liu & Jian Yu & Min Li & Yang Liu & Xiaotong Hu & Rui Zhong & Yingbiao Chen, 2022. "Ecosystem Service Responses to Land Use Change in Southern Guangzhou—The Practice of Applying Natural Resources Integrated Database for Research," Land, MDPI, vol. 11(7), pages 1-27, July.
    7. Yajing Shao & Xuefeng Yuan & Chaoqun Ma & Ruifang Ma & Zhaoxia Ren, 2020. "Quantifying the Spatial Association between Land Use Change and Ecosystem Services Value: A Case Study in Xi’an, China," Sustainability, MDPI, vol. 12(11), pages 1-20, May.
    8. Wu, Yongjiao & Dong, Suocheng & Huang, Haosheng & Zhai, Jun & Li, Yu & Huang, Dingxuan, 2018. "Quantifying urban land expansion dynamics through improved land management institution model: Application in Ningxia-Inner Mongolia, China," Land Use Policy, Elsevier, vol. 78(C), pages 386-396.
    9. Temitope Oluwaseun Ojo & Abiodun A. Ogundeji & Chijioke U. Emenike, 2022. "Does Adoption of Climate Change Adaptation Strategy Improve Food Security? A Case of Rice Farmers in Ogun State, Nigeria," Land, MDPI, vol. 11(11), pages 1-16, October.
    10. Tan Li & Qingguo Zhang & Ying Zhang, 2018. "Modelling a Compensation Standard for a Regional Forest Ecosystem: A Case Study in Yanqing District, Beijing, China," IJERPH, MDPI, vol. 15(4), pages 1-20, March.
    11. Tariq Aziz & Alain-Désiré Nimubona & Philippe Van Cappellen, 2023. "Comparative Valuation of Three Ecosystem Services in a Canadian Watershed Using Global, Regional, and Local Unit Values," Sustainability, MDPI, vol. 15(14), pages 1-17, July.
    12. Elena Cervelli & Ester Scotto di Perta & Stefania Pindozzi, 2020. "Identification of Marginal Landscapes as Support for Sustainable Development: GIS-Based Analysis and Landscape Metrics Assessment in Southern Italy Areas," Sustainability, MDPI, vol. 12(13), pages 1-25, July.
    13. Xinmin Zhang & Hualin Xie & Jiaying Shi & Tiangui Lv & Caihua Zhou & Wangda Liu, 2020. "Assessing Changes in Ecosystem Service Values in Response to Land Cover Dynamics in Jiangxi Province, China," IJERPH, MDPI, vol. 17(9), pages 1-15, April.
    14. Giefer, Madeline M. & An, Li & Chen, Xiaodong, 2021. "Normative, livelihood, and demographic influences on enrollment in a payment for ecosystem services program," Land Use Policy, Elsevier, vol. 108(C).
    15. Wen Li & Jianwei Geng & Jingling Bao & Wenxiong Lin & Zeyan Wu & Shuisheng Fan, 2023. "Analysis of Spatial and Temporal Variations in Ecosystem Service Functions and Drivers in Anxi County Based on the InVEST Model," Sustainability, MDPI, vol. 15(13), pages 1-16, June.
    16. Daranrat Jaitiang & Wen-Chi Huang & Shang-Ho Yang, 2021. "Does Income Inequality Exist among Urban Farmers? A Demonstration of Lorenz Curves from Northern Thailand," Sustainability, MDPI, vol. 13(9), pages 1-16, May.
    17. Zhineng Hu & Jing Ma & Qiong Feng & C. Patrick Scott & Hani I. Mesak, 2022. "The detection dilemma of marginally non‐poor households in poverty alleviation evaluation: Evidence from a linear quantile mixed model," Review of Development Economics, Wiley Blackwell, vol. 26(3), pages 1491-1517, August.
    18. Daniel G. Costa & João Carlos N. Bittencourt & Franklin Oliveira & João Paulo Just Peixoto & Thiago C. Jesus, 2024. "Achieving Sustainable Smart Cities through Geospatial Data-Driven Approaches," Sustainability, MDPI, vol. 16(2), pages 1-30, January.
    19. Zhao, Ge & Zhou, P. & Wen, Wen, 2022. "What cause regional inequality of technology innovation in renewable energy? Evidence from China," Applied Energy, Elsevier, vol. 310(C).
    20. Vera V. Yurak & Margarita N. Ignatyeva & Aleksey V. Dushin, 2020. "Valuation of ecosystem services in a region: A review of the international experience," Journal of New Economy, Ural State University of Economics, vol. 21(4), pages 79-103, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:11:y:2022:i:8:p:1186-:d:874944. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.