IDEAS home Printed from https://ideas.repec.org/a/spr/endesu/v23y2021i8d10.1007_s10668-020-01149-3.html
   My bibliography  Save this article

Assessment of urban sprawl characteristics in Indian cities using remote sensing: case studies of Patna, Ranchi, and Srinagar

Author

Listed:
  • Vishal Chettry

    (VNIT Nagpur)

  • Meenal Surawar

    (VNIT Nagpur)

Abstract

The rapid urban growth in mid-sized cities of developing nations has induced conflict between development and the environment, often leading to urban sprawl. However, studies focusing on the assessment of urban sprawl in mid-sized cities are comparatively rare. Therefore, this paper assesses the spatio-temporal urban sprawl characteristics of three typical mid-sized Indian cities, such as Patna Urban Agglomeration (UA), Ranchi UA, and Srinagar UA, from 1991 to 2018 using Landsat images. The population density, landscape metrics, and urban expansion index were employed to detect and assess urban sprawl characteristics. A multivariable integrated urban sprawl index was computed using Z-score to examine the intensity of urban sprawl. The results revealed robust evidence of the built-up growth in all three cities. The rise in built-up was observed due to the conversion of fallow and agriculture land covers in Patna UA and Ranchi UA, while water body and fallow land covers in Srinagar UA. Despite an increase in the total population and built-up, population density declined in all three cities. The analysis using landscape metrics exhibited continuous outward expansion with an increase in shape irregularity of built-up patches. The urban expansion index indicated the prevalence of edge expansion typology of urban sprawl. Patna UA exhibited the highest intensity of urban sprawl as per the multivariable integrated urban sprawl index. The obtained results will benefit the urban planners and officials to promote urban sustenance by preparing relevant strategies under the Smart City Mission. This study demonstrated an effective utilization of scientific approaches to assess urban sprawl characteristics in mid-sized cities.

Suggested Citation

  • Vishal Chettry & Meenal Surawar, 2021. "Assessment of urban sprawl characteristics in Indian cities using remote sensing: case studies of Patna, Ranchi, and Srinagar," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(8), pages 11913-11935, August.
  • Handle: RePEc:spr:endesu:v:23:y:2021:i:8:d:10.1007_s10668-020-01149-3
    DOI: 10.1007/s10668-020-01149-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10668-020-01149-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10668-020-01149-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mohsen Goodarzi & Nafiseh Haghtalab & Iman Saeedi & Nathan J. Moore, 2020. "Structural and functional improvement of urban fringe areas: toward achieving sustainable built–natural environment interactions," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 22(7), pages 6727-6754, October.
    2. Pushpendra Singh Sisodia & Vivekananda Tiwari & Anil Kumar Dahiya, 2016. "Urban Sprawl Monitoring using Remote Sensing and GIS Techniques of the City Jaipur, India," International Journal of Applied Geospatial Research (IJAGR), IGI Global, vol. 7(3), pages 93-104, July.
    3. Bahadir Alturk & Fatih Konukcu, 2020. "Modeling land use/land cover change and mapping morphological fragmentation of agricultural lands in Thrace Region/Turkey," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 22(7), pages 6379-6404, October.
    4. M. Vani & P. Rama Chandra Prasad, 2020. "Assessment of spatio-temporal changes in land use and land cover, urban sprawl, and land surface temperature in and around Vijayawada city, India," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 22(4), pages 3079-3095, April.
    5. Idowu Ezekiel Olorunfemi & Johnson Toyin Fasinmirin & Ayorinde Akinlabi Olufayo & Akinola Adesuji Komolafe, 2020. "GIS and remote sensing-based analysis of the impacts of land use/land cover change (LULCC) on the environmental sustainability of Ekiti State, southwestern Nigeria," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 22(2), pages 661-692, February.
    6. Dobric, Jadran & Schmid, Friedrich, 2007. "A goodness of fit test for copulas based on Rosenblatt's transformation," Computational Statistics & Data Analysis, Elsevier, vol. 51(9), pages 4633-4642, May.
    7. Fatih Terzi & Fulin Bolen, 2009. "Urban Sprawl Measurement of Istanbul," European Planning Studies, Taylor & Francis Journals, vol. 17(10), pages 1559-1570, June.
    8. Hashem Dadashpoor & Fardis Salarian, 2020. "Urban sprawl on natural lands: analyzing and predicting the trend of land use changes and sprawl in Mazandaran city region, Iran," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 22(2), pages 593-614, February.
    9. Shivangi S. Somvanshi & Oshin Bhalla & Phool Kunwar & Madhulika Singh & Prafull Singh, 2020. "Monitoring spatial LULC changes and its growth prediction based on statistical models and earth observation datasets of Gautam Budh Nagar, Uttar Pradesh, India," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 22(2), pages 1073-1091, February.
    10. Eshetu Shifaw & Jinming Sha & Xiaomei Li, 2020. "Detection of spatiotemporal dynamics of land cover and its drivers using remote sensing and landscape metrics (Pingtan Island, China)," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 22(2), pages 1269-1298, February.
    11. Joan Perez & Giovanni Fusco & François Moriconi-Ebrard, 2019. "Identification and quantification of urban space in India: Defining urban macro-structures," Urban Studies, Urban Studies Journal Limited, vol. 56(10), pages 1988-2004, August.
    12. Shirkou Jaafari & Yousef Sakieh & Afshin Alizadeh Shabani & Afshin Danehkar & Ali-akbar Nazarisamani, 2016. "Landscape change assessment of reservation areas using remote sensing and landscape metrics (case study: Jajroud reservation, Iran)," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 18(6), pages 1701-1717, December.
    13. Murat Atasoy, 2020. "Assessing the impacts of land-use/land-cover change on the development of urban heat island effects," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 22(8), pages 7547-7557, December.
    14. Amnon Frenkel & Maya Ashkenazi, 2008. "The integrated sprawl index: measuring the urban landscape in Israel," The Annals of Regional Science, Springer;Western Regional Science Association, vol. 42(1), pages 99-121, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Qiangyi Li & Lan Yang & Shuang Huang & Yangqing Liu & Chenyang Guo, 2023. "The Effects of Urban Sprawl on Electricity Consumption: Empirical Evidence from 283 Prefecture-Level Cities in China," Land, MDPI, vol. 12(8), pages 1-27, August.
    2. Linlin Zhang & Xianfan Shu & Liang Zhang, 2023. "Urban Sprawl and Its Multidimensional and Multiscale Measurement," Land, MDPI, vol. 12(3), pages 1-17, March.
    3. Daniel G. Costa & João Carlos N. Bittencourt & Franklin Oliveira & João Paulo Just Peixoto & Thiago C. Jesus, 2024. "Achieving Sustainable Smart Cities through Geospatial Data-Driven Approaches," Sustainability, MDPI, vol. 16(2), pages 1-30, January.
    4. Shuangao Wang & Rajchandar Padmanaban & Mohamed Shamsudeen & Felipe S. Campos & Pedro Cabral, 2022. "Landscape Impacts on Ecosystem Service Values Using the Image Fusion Approach," Land, MDPI, vol. 11(8), pages 1-18, July.
    5. Tikoudis, Ioannis & Farrow, Katherine & Mebiame, Rose Mba & Oueslati, Walid, 2022. "Beyond average population density: Measuring sprawl with density-allocation indicators," Land Use Policy, Elsevier, vol. 112(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sunil Kumar & Swagata Ghosh & Sultan Singh, 2022. "Polycentric urban growth and identification of urban hot spots in Faridabad, the million-plus metropolitan city of Haryana, India: a zonal assessment using spatial metrics and GIS," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(6), pages 8246-8286, June.
    2. Alessia D’Agata & Daniele Ponza & Florin Adrian Stroiu & Ioannis Vardopoulos & Kostas Rontos & Francisco Escrivà & Francesco Chelli & Leonardo Salvatore Alaimo & Luca Salvati & Samaneh Sadat Nickyain, 2023. "Toward Sustainable Development Trajectories? Estimating Urban Footprints from High-Resolution Copernicus Layers in Athens, Greece," Land, MDPI, vol. 12(8), pages 1-17, July.
    3. Rosanna Salvia & Rares Halbac-Cotoara-Zamfir & Sirio Cividino & Luca Salvati & Giovanni Quaranta, 2020. "From Rural Spaces to Peri-Urban Districts: Metropolitan Growth, Sparse Settlements and Demographic Dynamics in a Mediterranean Region," Land, MDPI, vol. 9(6), pages 1-20, June.
    4. Barry Kew & Brian D. Lee, 2013. "Measuring Sprawl across the Urban Rural Continuum Using an Amalgamated Sprawl Index," Sustainability, MDPI, vol. 5(5), pages 1-23, April.
    5. Salvati, Luca & Sateriano, Adele & Grigoriadis, Efstathios & Carlucci, Margherita, 2017. "New wine in old bottles: The (changing) socioeconomic attributes of sprawl during building boom and stagnation," Ecological Economics, Elsevier, vol. 131(C), pages 361-372.
    6. Auwalu Faisal Koko & Yue Wu & Ghali Abdullahi Abubakar & Akram Ahmed Noman Alabsi & Roknisadeh Hamed & Muhammed Bello, 2021. "Thirty Years of Land Use/Land Cover Changes and Their Impact on Urban Climate: A Study of Kano Metropolis, Nigeria," Land, MDPI, vol. 10(11), pages 1-27, October.
    7. Michel Opelele Omeno & Ying Yu & Wenyi Fan & Tolerant Lubalega & Chen Chen & Claude Kachaka Sudi Kaiko, 2021. "Analysis of the Impact of Land-Use/Land-Cover Change on Land-Surface Temperature in the Villages within the Luki Biosphere Reserve," Sustainability, MDPI, vol. 13(20), pages 1-23, October.
    8. David Gálvez Ruiz & Pilar Diaz Cuevas & Olta Braçe & Marco Garrido-Cumbrera, 2018. "Developing an Index to Measure Sub-municipal Level Urban Sprawl," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 140(3), pages 929-952, December.
    9. Hashem Dadashpoor & Hossein Panahi, 2021. "Exploring an integrated spatially model for land-use scenarios simulation in a metropolitan region," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(9), pages 13628-13649, September.
    10. Wu Zening & He Chentao & Huiliang Wang & Qian Zhang, 2020. "Reservoir Inflow Synchronization Analysis for Four Reservoirs on a Mainstream and its Tributaries in Flood Season Based on a Multivariate Copula Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(9), pages 2753-2770, July.
    11. Can, S.U. & Einmahl, John & Laeven, R.J.A., 2020. "Goodness-of-fit testing for copulas: A distribution-free approach," Other publications TiSEM 211b2be9-b46e-41e2-9b95-1, Tilburg University, School of Economics and Management.
    12. Tao Peng & Hongwei Deng, 2021. "Study on the division of main functional regions based on relative carrying capacity of resources: a case study of Guiyang, southwest China," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(6), pages 9493-9513, June.
    13. Somayeh Ahani & Hashem Dadashpoor, 2021. "Urban growth containment policies for the guidance and control of peri-urbanization: a review and proposed framework," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(10), pages 14215-14244, October.
    14. Abdul Mannan & Fan Yongxiang & Tauheed Ullah Khan & Syed Moazzam Nizami & Beckline Mukete & Adnan Ahmad & Ummay Amara & Jincheng Liu & Mamoona Wali Muhammad, 2021. "Urban Growth Patterns and Forest Carbon Dynamics in the Metropolitan Twin Cities of Islamabad and Rawalpindi, Pakistan," Sustainability, MDPI, vol. 13(22), pages 1-14, November.
    15. Zhang, Shulin & Okhrin, Ostap & Zhou, Qian M. & Song, Peter X.-K., 2016. "Goodness-of-fit test for specification of semiparametric copula dependence models," Journal of Econometrics, Elsevier, vol. 193(1), pages 215-233.
    16. Hofert, Marius & Oldford, Wayne, 2018. "Visualizing dependence in high-dimensional data: An application to S&P 500 constituent data," Econometrics and Statistics, Elsevier, vol. 8(C), pages 161-183.
    17. Emura, Takeshi & Lin, Chien-Wei & Wang, Weijing, 2010. "A goodness-of-fit test for Archimedean copula models in the presence of right censoring," Computational Statistics & Data Analysis, Elsevier, vol. 54(12), pages 3033-3043, December.
    18. Grundke, Peter & Polle, Simone, 2012. "Crisis and risk dependencies," European Journal of Operational Research, Elsevier, vol. 223(2), pages 518-528.
    19. Ilaria ZAMBON & Luca SALVATI, 2018. "Demographic Dynamics, Economic Expansion And Settlement Dispersion In Southern Europe: Contrasting Patterns Of Growth And Change In Three Metropolitan Regions," Management Research and Practice, Research Centre in Public Administration and Public Services, Bucharest, Romania, vol. 10(2), pages 41-62, June.
    20. Tomasz Zaborowski, 2021. "It’s All about Details. Why the Polish Land Policy Framework Fails to Manage Designation of Developable Land," Land, MDPI, vol. 10(9), pages 1-27, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:endesu:v:23:y:2021:i:8:d:10.1007_s10668-020-01149-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.