IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v11y2022i12p2125-d984064.html
   My bibliography  Save this article

Spatial Analysis of Aridity during Grapevine Growth Stages in Extremadura (Southwest Spain)

Author

Listed:
  • Abelardo García-Martín

    (Departamento de Ingeniería del Medio Agronómico y Forestal, Escuela de Ingenierías Agrarias, Universidad de Extremadura, Avda. Adolfo Suárez, s/n., 06007 Badajoz, Spain)

  • Cristina Aguirado

    (Departamento de Ingeniería del Medio Agronómico y Forestal, Escuela de Ingenierías Agrarias, Universidad de Extremadura, Avda. Adolfo Suárez, s/n., 06007 Badajoz, Spain)

  • Luis L. Paniagua

    (Departamento de Ingeniería del Medio Agronómico y Forestal, Escuela de Ingenierías Agrarias, Universidad de Extremadura, Avda. Adolfo Suárez, s/n., 06007 Badajoz, Spain)

  • Virginia Alberdi

    (Departamento de Expresión Gráfica, Escuela de Ingenierías Industriales, Universidad de Extremadura, Avda. de Elvas, s/n., 06006 Badajoz, Spain)

  • Francisco J. Moral

    (Departamento de Expresión Gráfica, Escuela de Ingenierías Industriales, Universidad de Extremadura, Avda. de Elvas, s/n., 06006 Badajoz, Spain)

  • Francisco J. Rebollo

    (Departamento de Expresión Gráfica, Escuela de Ingenierías Agrarias, Universidad de Extremadura, Avda. Adolfo Suárez, s/n., 06007 Badajoz, Spain)

Abstract

Aridity is a key determinant of agriculture worldwide due to rising temperatures, rainfall variability, and drought frequency and intensity, amongst other factors. The De Martonne aridity index is particularly useful to evaluate the spatial and temporal variations in aridity in agricultural regions for characterising the climate of these areas and evaluating their susceptibility to climate change. From the mean precipitation and maximum–minimum daily temperature values recorded at 108 weather stations over 32 years (1989–2020) in Extremadura (southwest Spain), spatial analysis of aridity was performed at different grapevine growth stages. The present study aimed to (1) determine the mean aridity conditions in Extremadura according to year and growth stage and (2) assess aridity in six grapevine-growing areas of Ribera del Guadiana de Extremadura (Spain) protected designation of origin (PDO). To visualise aridity patterns, maps were generated using a geographic information system and a multivariate regression geostatistical algorithm (ordinary kriging). The climate of Extremadura is primarily Mediterranean at the annual scale, and aridity widely varies from extremely humid at the dormancy stage to arid at the berry development and ripening stages. This variation shapes the conditions of the studied grapevine-growing region. Furthermore, large differences were noted amongst the sub-areas of the Rivera del Guadiana PDO at the initial and final grapevine growth stages, requiring differential crop management. In addition, analysis according to growth stage allowed us to identify the most vulnerable areas and periods to climate change and potential grapevine-growing areas highly suitable for this climate.

Suggested Citation

  • Abelardo García-Martín & Cristina Aguirado & Luis L. Paniagua & Virginia Alberdi & Francisco J. Moral & Francisco J. Rebollo, 2022. "Spatial Analysis of Aridity during Grapevine Growth Stages in Extremadura (Southwest Spain)," Land, MDPI, vol. 11(12), pages 1-14, November.
  • Handle: RePEc:gam:jlands:v:11:y:2022:i:12:p:2125-:d:984064
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/11/12/2125/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/11/12/2125/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. L. B. Webb & P. H. Whetton & J. Bhend & R. Darbyshire & P. R. Briggs & E. W. R. Barlow, 2012. "Earlier wine-grape ripening driven by climatic warming and drying and management practices," Nature Climate Change, Nature, vol. 2(4), pages 259-264, April.
    2. Alvaro Calzadilla & Katrin Rehdanz & Richard Betts & Pete Falloon & Andy Wiltshire & Richard Tol, 2013. "Climate change impacts on global agriculture," Climatic Change, Springer, vol. 120(1), pages 357-374, September.
    3. Phogat, V. & Cox, J.W. & Šimůnek, J., 2018. "Identifying the future water and salinity risks to irrigated viticulture in the Murray-Darling Basin, South Australia," Agricultural Water Management, Elsevier, vol. 201(C), pages 107-117.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jason F.L. Koopman & Onno Kuik & Richard S.J. Tol & Roy Brouwer, 2015. "Water Scarcity From Climate Change And Adaptation Response In An International River Basin Context," Climate Change Economics (CCE), World Scientific Publishing Co. Pte. Ltd., vol. 6(01), pages 1-22.
    2. Phogat, V. & Cox, J.W. & Šimůnek, J., 2018. "Identifying the future water and salinity risks to irrigated viticulture in the Murray-Darling Basin, South Australia," Agricultural Water Management, Elsevier, vol. 201(C), pages 107-117.
    3. Zvi Baum & Ruslana Rachel Palatnik & Iddo Kan & Mickey Rapaport-Rom, 2016. "Economic Impacts of Water Scarcity Under Diverse Water Salinities," Water Economics and Policy (WEP), World Scientific Publishing Co. Pte. Ltd., vol. 2(01), pages 1-22, March.
    4. Sheng, Yu & Zhao, Shiji & Yang, Sansi, 2021. "Weather shocks, adaptation and agricultural TFP: A cross-region comparison of Australian Broadacre farms," Energy Economics, Elsevier, vol. 101(C).
    5. Asfaw, S., 2018. "Market Participation, Weather Shocks and Welfare: Evidence from Malawi," 2018 Conference, July 28-August 2, 2018, Vancouver, British Columbia 277029, International Association of Agricultural Economists.
    6. Victor Nechifor & Matthew Winning, 2017. "The impacts of higher CO2 concentrations over global crop production and irrigation water requirements," EcoMod2017 10487, EcoMod.
    7. Mikémina, Pilo & Gerber, Nicolas & Wünscher, Tobias, 2018. "Impacts of Adaptation to Climate Change on farmers’ income in the Savana Region of Togo," Discussion Papers 271152, University of Bonn, Center for Development Research (ZEF).
    8. Maamoun, Nada & Grünhagen, Caroline & Ward, Hauke & Kornek, Ulrike, 2024. "A Seat at the Table: Distributional impacts of food-price increases due to climate change," EconStor Preprints 281165, ZBW - Leibniz Information Centre for Economics.
    9. Severen, Christopher & Costello, Christopher & Deschênes, Olivier, 2018. "A Forward-Looking Ricardian Approach: Do land markets capitalize climate change forecasts?," Journal of Environmental Economics and Management, Elsevier, vol. 89(C), pages 235-254.
    10. Chen, Xiaoguang & Cui, Xiaomeng & Gao, Jing, 2023. "Differentiated Agricultural Sensitivity and Adaptability to Rising Temperatures across Regions and Sectors in China," 2023 Annual Meeting, July 23-25, Washington D.C. 335522, Agricultural and Applied Economics Association.
    11. Hasan, Dudu & Erol, Cakmak, 2014. "Climate Change, Agriculture And Trade Liberalization: A Dynamic Cge Analysis For Turkey," 2014 Third Congress, June 25-27, 2014, Alghero, Italy 172964, Italian Association of Agricultural and Applied Economics (AIEAA).
    12. Yuquan W. Zhang & Jianhong E. Mu & Mark Musumba & Bruce A. McCarl & Xiaokun Gu & Yuanfei Zhou & Zhengwei Cao & Qiang Li, 2018. "The Role of Climate Factors in Shaping China’s Crop Mix: An Empirical Exploration," Sustainability, MDPI, vol. 10(10), pages 1-17, October.
    13. Aziza Irhza & Laila Nassiri & Moussa El Jarroudi & Fouad Rachidi & Rachid Lahlali & Ghizlane Echchgadda, 2023. "Description of the Gap between Local Agricultural Practices and Agroecological Soil Management Tools in Zerhoun and in the Middle Atlas Areas of Morocco," Land, MDPI, vol. 12(2), pages 1-17, January.
    14. Pizarro, E. & Galleguillos, M. & Barría, P. & Callejas, R., 2022. "Irrigation management or climate change ? Which is more important to cope with water shortage in the production of table grape in a Mediterranean context," Agricultural Water Management, Elsevier, vol. 263(C).
    15. Abad, Francisco Javier & Marín, Diana & Loidi, Maite & Miranda, Carlos & Royo, José Bernardo & Urrestarazu, Jorge & Santesteban, Luis Gonzaga, 2019. "Evaluation of the incidence of severe trimming on grapevine (Vitis vinifera L.) water consumption," Agricultural Water Management, Elsevier, vol. 213(C), pages 646-653.
    16. Amogh Prakasha Kumar & Richard Watt & Laura Meriluoto, 2021. "New Evidence on Using Expert Ratings to Proxy for Wine Quality in Climate Change Research," Working Papers in Economics 21/10, University of Canterbury, Department of Economics and Finance.
    17. Ernest Acheampong & Nicholas Ozor & Eric Owusu, 2014. "Vulnerability assessment of Northern Ghana to climate variability," Climatic Change, Springer, vol. 126(1), pages 31-44, September.
    18. Anil Markandya, 2017. "State of Knowledge on Climate Change, Water, and Economics," World Bank Publications - Reports 26491, The World Bank Group.
    19. Escalante, Luis Enrique & Maisonnave, Helene, 2022. "Impacts of climate disasters on women and food security in Bolivia," Economic Modelling, Elsevier, vol. 116(C).
    20. Ruchie Pathak & Nicholas R. Magliocca, 2022. "Assessing the Representativeness of Irrigation Adoption Studies: A Meta-Study of Global Research," Agriculture, MDPI, vol. 12(12), pages 1-31, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:11:y:2022:i:12:p:2125-:d:984064. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.