IDEAS home Printed from https://ideas.repec.org/a/gam/jjrfmx/v18y2025i7p365-d1692241.html
   My bibliography  Save this article

Inflation Forecasting: LSTM Networks vs. Traditional Models for Accurate Predictions

Author

Listed:
  • Tormod Rygh

    (Department of Economics, Norwegian University of Science and Technology, Klæbuveien 72, 7030 Trondheim, Norway)

  • Camilla Vaage

    (Department of Economics, Norwegian University of Science and Technology, Klæbuveien 72, 7030 Trondheim, Norway)

  • Sjur Westgaard

    (Department of Industrial Economics and Technology Management, Norwegian University of Science and Technology, Alfred Getz vei 3, 7041 Trondheim, Norway)

  • Petter Eilif de Lange

    (Department of International Business, Norwegian University of Science and Technology, Larsgårdsvegen 2, 6065 Ålesund, Norway)

Abstract

This study investigates the effectiveness of neural network models, particularly LSTM networks, in enhancing the accuracy of inflation forecasting. We compare LSTM models with traditional univariate time series models such as SARIMA and AR(p) models, as well as machine learning approaches like LASSO regression. To improve the standard LSTM model, we apply advanced feature selection techniques and introduce data augmentation using the MBB method. Our analysis reveals that LASSO-LSTM hybrid models generally outperform LSTM models utilizing PCA for feature selection, particularly in datasets with multiple features, as measured by RMSE. However, despite these enhancements, LSTM models tend to underperform compared to simpler models like LASSO regression, AR(p), and SARIMA in the context of inflation forecasting. These findings suggest that, for policymakers and central bankers seeking reliable inflation forecasts, traditional models such as LASSO regression, AR(p), and SARIMA may offer more practical and accurate solutions.

Suggested Citation

  • Tormod Rygh & Camilla Vaage & Sjur Westgaard & Petter Eilif de Lange, 2025. "Inflation Forecasting: LSTM Networks vs. Traditional Models for Accurate Predictions," JRFM, MDPI, vol. 18(7), pages 1-28, July.
  • Handle: RePEc:gam:jjrfmx:v:18:y:2025:i:7:p:365-:d:1692241
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1911-8074/18/7/365/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1911-8074/18/7/365/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Forni, Mario & Hallin, Marc & Lippi, Marco & Reichlin, Lucrezia, 2003. "Do financial variables help forecasting inflation and real activity in the euro area?," Journal of Monetary Economics, Elsevier, vol. 50(6), pages 1243-1255, September.
    2. Anna Almosova & Niek Andresen, 2023. "Nonlinear inflation forecasting with recurrent neural networks," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(2), pages 240-259, March.
    3. Hasan ŞENGÜLER & Berat KARA, 2025. "Forecasting the Inflation for Budget Forecasters: An Analysis of ANN Model Performance in Türkiye," Journal of Research in Economics, Politics & Finance, Ersan ERSOY, vol. 10(1), pages 58-91.
    4. Lenza, Michele & Moutachaker, Inès & Paredes, Joan, 2023. "Forecasting euro area inflation with machine-learning models," Research Bulletin, European Central Bank, vol. 112.
    5. Sendhil Mullainathan & Jann Spiess, 2017. "Machine Learning: An Applied Econometric Approach," Journal of Economic Perspectives, American Economic Association, vol. 31(2), pages 87-106, Spring.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shovon Sengupta & Tanujit Chakraborty & Sunny Kumar Singh, 2023. "Forecasting CPI inflation under economic policy and geopolitical uncertainties," Papers 2401.00249, arXiv.org, revised Jul 2024.
    2. Panpan Zhu & Qingjie Zhou & Yinpeng Zhang, 2024. "Investor attention and consumer price index inflation rate: Evidence from the United States," Palgrave Communications, Palgrave Macmillan, vol. 11(1), pages 1-12, December.
    3. Shovon Sengupta & Tanujit Chakraborty & Sunny Kumar Singh, 2024. "Forecasting CPI inflation under economic policy and geopolitical uncertainties," Post-Print hal-05056934, HAL.
    4. Shovon Sengupta & Bhanu Pratap & Amit Pawar, 2025. "Non-linear Phillips Curve for India: Evidence from Explainable Machine Learning," Papers 2504.05350, arXiv.org.
    5. Urmat Dzhunkeev, 2024. "Forecasting Inflation in Russia Using Gradient Boosting and Neural Networks," Russian Journal of Money and Finance, Bank of Russia, vol. 83(1), pages 53-76, March.
    6. Juergen Deppner & Marcelo Cajias, 2024. "Accounting for Spatial Autocorrelation in Algorithm-Driven Hedonic Models: A Spatial Cross-Validation Approach," The Journal of Real Estate Finance and Economics, Springer, vol. 68(2), pages 235-273, February.
    7. Naguib, Costanza, 2019. "Estimating the Heterogeneous Impact of the Free Movement of Persons on Relative Wage Mobility," Economics Working Paper Series 1903, University of St. Gallen, School of Economics and Political Science.
    8. Philippe Goulet Coulombe & Maxime Leroux & Dalibor Stevanovic & Stéphane Surprenant, 2022. "How is machine learning useful for macroeconomic forecasting?," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(5), pages 920-964, August.
    9. Mehmet Balcilar & Rangan Gupta & Stephen M. Miller, 2015. "The out-of-sample forecasting performance of nonlinear models of regional housing prices in the US," Applied Economics, Taylor & Francis Journals, vol. 47(22), pages 2259-2277, May.
    10. Thiemo Fetzer & Stephan Kyburz, 2024. "Cohesive Institutions and Political Violence," The Review of Economics and Statistics, MIT Press, vol. 106(1), pages 133-150, January.
    11. Dang, Hai-Anh & Carletto, Calogero & Gourlay, Sydney & Abanokova, Kseniya, 2024. "Addressing Soil Quality Data Gaps with Imputation: Evidence from Ethiopia and Uganda," GLO Discussion Paper Series 1445, Global Labor Organization (GLO).
    12. Tobias Götze & Marc Gürtler & Eileen Witowski, 2020. "Improving CAT bond pricing models via machine learning," Journal of Asset Management, Palgrave Macmillan, vol. 21(5), pages 428-446, September.
    13. Joseph, Andreas & Potjagailo, Galina & Chakraborty, Chiranjit & Kapetanios, George, 2024. "Forecasting UK inflation bottom up," International Journal of Forecasting, Elsevier, vol. 40(4), pages 1521-1538.
    14. Sascha O. Becker & Thiemo Fetzer, 2018. "Has Eastern European Migration Impacted UK-born Workers?," CAGE Online Working Paper Series 376, Competitive Advantage in the Global Economy (CAGE).
    15. Arthur Charpentier & Emmanuel Flachaire & Antoine Ly, 2017. "Econom\'etrie et Machine Learning," Papers 1708.06992, arXiv.org, revised Mar 2018.
    16. Crespo, Cristian, 2020. "Two become one: improving the targeting of conditional cash transfers with a predictive model of school dropout," LSE Research Online Documents on Economics 123139, London School of Economics and Political Science, LSE Library.
    17. Ioanna Arkoudi & Carlos Lima Azevedo & Francisco C. Pereira, 2021. "Combining Discrete Choice Models and Neural Networks through Embeddings: Formulation, Interpretability and Performance," Papers 2109.12042, arXiv.org, revised Sep 2021.
    18. Gharad Bryan & Dean Karlan & Adam Osman, 2024. "Big Loans to Small Businesses: Predicting Winners and Losers in an Entrepreneurial Lending Experiment," American Economic Review, American Economic Association, vol. 114(9), pages 2825-2860, September.
    19. Yucheng Yang & Zhong Zheng & Weinan E, 2020. "Interpretable Neural Networks for Panel Data Analysis in Economics," Papers 2010.05311, arXiv.org, revised Nov 2020.
    20. Erik Heilmann & Janosch Henze & Heike Wetzel, 2021. "Machine learning in energy forecasts with an application to high frequency electricity consumption data," MAGKS Papers on Economics 202135, Philipps-Universität Marburg, Faculty of Business Administration and Economics, Department of Economics (Volkswirtschaftliche Abteilung).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jjrfmx:v:18:y:2025:i:7:p:365-:d:1692241. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.