IDEAS home Printed from https://ideas.repec.org/a/gam/jjrfmx/v18y2025i6p296-d1667069.html
   My bibliography  Save this article

Ensemble Multi-Expert Forecasting: Robust Decision-Making in Chaotic Financial Markets

Author

Listed:
  • Alexander Musaev

    (St. Petersburg Institute for Informatics and Automation of the Russian Academy of Sciences, 199178 St. Petersburg, Russia)

  • Dmitry Grigoriev

    (Center of Econometrics and Business Analytics (CEBA), St. Petersburg State University, 199034 St. Petersburg, Russia)

Abstract

Financial time series in volatile markets often exhibit non-stationary behavior and signatures of stochastic chaos, challenging traditional forecasting methods based on stationarity assumptions. In this paper, we introduce a novel multi-expert forecasting system (MES) that leverages ensemble machine learning techniques—including bagging, boosting, and stacking—to enhance prediction accuracy and support robust risk management decisions. The proposed framework integrates diverse “weak learner” models, ranging from linear extrapolation and multidimensional regression to sentiment-based text analytics, into a unified decision-making architecture. Each expert is designed to capture distinct aspects of the underlying market dynamics, while the supervisory module aggregates their outputs using adaptive weighting schemes that account for evolving error characteristics. Empirical evaluations using high-frequency currency data, notably for the EUR/USD pair, demonstrate that the ensemble approach significantly improves forecast reliability, as evidenced by higher winning probabilities and better net trading results compared to individual forecasting models. These findings contribute both to the theoretical understanding of ensemble forecasting under chaotic market conditions and to its practical application in financial risk management, offering a reproducible methodology for managing uncertainty in highly dynamic environments.

Suggested Citation

  • Alexander Musaev & Dmitry Grigoriev, 2025. "Ensemble Multi-Expert Forecasting: Robust Decision-Making in Chaotic Financial Markets," JRFM, MDPI, vol. 18(6), pages 1-22, May.
  • Handle: RePEc:gam:jjrfmx:v:18:y:2025:i:6:p:296-:d:1667069
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1911-8074/18/6/296/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1911-8074/18/6/296/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Doron Avramov & Tarun Chordia, 2006. "Asset Pricing Models and Financial Market Anomalies," The Review of Financial Studies, Society for Financial Studies, vol. 19(3), pages 1001-1040.
    2. Alexander Musaev & Andrey Makshanov & Dmitry Grigoriev & Marcio Eisencraft, 2023. "The Genesis of Uncertainty: Structural Analysis of Stochastic Chaos in Finance Markets," Complexity, Hindawi, vol. 2023, pages 1-16, March.
    3. Fama, Eugene F, 1970. "Efficient Capital Markets: A Review of Theory and Empirical Work," Journal of Finance, American Finance Association, vol. 25(2), pages 383-417, May.
    4. Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alagidede, Paul & Panagiotidis, Theodore, 2009. "Modelling stock returns in Africa's emerging equity markets," International Review of Financial Analysis, Elsevier, vol. 18(1-2), pages 1-11, March.
    2. Yok-Yong Lee & M. H. Yahya & A. M. Bany-Ariffin & S. Aslam, 2018. "Leverage Effect and Switching of Market Efficiency Post Goods and Services Tax (GST) Imposition," International Business Research, Canadian Center of Science and Education, vol. 11(3), pages 162-178, March.
    3. Dutta, Shantanu & Essaddam, Naceur & Kumar, Vinod & Saadi, Samir, 2017. "How does electronic trading affect efficiency of stock market and conditional volatility? Evidence from Toronto Stock Exchange," Research in International Business and Finance, Elsevier, vol. 39(PB), pages 867-877.
    4. Uctum, Remzi & Renou-Maissant, Patricia & Prat, Georges & Lecarpentier-Moyal, Sylvie, 2017. "Persistence of announcement effects on the intraday volatility of stock returns: Evidence from individual data," Review of Financial Economics, Elsevier, vol. 35(C), pages 43-56.
    5. David Vidal-Tomás & Simone Alfarano, 2020. "An agent-based early warning indicator for financial market instability," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 15(1), pages 49-87, January.
    6. Catania, Leopoldo & Proietti, Tommaso, 2020. "Forecasting volatility with time-varying leverage and volatility of volatility effects," International Journal of Forecasting, Elsevier, vol. 36(4), pages 1301-1317.
    7. Loredana Ureche-Rangau & Quiterie de Rorthays, 2009. "More on the volatility-trading volume relationship in emerging markets: The Chinese stock market," Journal of Applied Statistics, Taylor & Francis Journals, vol. 36(7), pages 779-799.
    8. Milionis, Alexandros E., 2007. "Efficient capital markets: A statistical definition and comments," Statistics & Probability Letters, Elsevier, vol. 77(6), pages 607-613, March.
    9. Geweke, J. & Joel Horowitz & Pesaran, M.H., 2006. "Econometrics: A Bird’s Eye View," Cambridge Working Papers in Economics 0655, Faculty of Economics, University of Cambridge.
    10. Aggarwal, Divya, 2019. "Do bitcoins follow a random walk model?," Research in Economics, Elsevier, vol. 73(1), pages 15-22.
    11. Dragos Stefan Oprea & Elena Valentina Tilica, 2014. "Day-of-the-Week Effect in Post-Communist East European Stock Markets," International Journal of Academic Research in Accounting, Finance and Management Sciences, Human Resource Management Academic Research Society, International Journal of Academic Research in Accounting, Finance and Management Sciences, vol. 4(3), pages 119-129, July.
    12. Amilon, Henrik, 2008. "Estimation of an adaptive stock market model with heterogeneous agents," Journal of Empirical Finance, Elsevier, vol. 15(2), pages 342-362, March.
    13. Doyle, John R. & Chen, Catherine Huirong, 2009. "The wandering weekday effect in major stock markets," Journal of Banking & Finance, Elsevier, vol. 33(8), pages 1388-1399, August.
    14. Emmanuel Hache & Anthony Paris, 2018. "Market Efficiency and Optimal Hedging Strategy for the US Ethanol Market," EconomiX Working Papers 2018-6, University of Paris Nanterre, EconomiX.
    15. Yang, Yanlin & Hu, Xuemei & Jiang, Huifeng, 2022. "Group penalized logistic regressions predict up and down trends for stock prices," The North American Journal of Economics and Finance, Elsevier, vol. 59(C).
    16. Malinda & Maya & Jo-Hui & Chen, 2022. "Testing for the Long Memory and Multiple Structural Breaks in Consumer ETFs," Journal of Applied Finance & Banking, SCIENPRESS Ltd, vol. 12(6), pages 1-6.
    17. F. DePenya & L. Gil-Alana, 2006. "Testing of nonstationary cycles in financial time series data," Review of Quantitative Finance and Accounting, Springer, vol. 27(1), pages 47-65, August.
    18. Kian-Ping Lim & Weiwei Luo & Jae H. Kim, 2013. "Are US stock index returns predictable? Evidence from automatic autocorrelation-based tests," Applied Economics, Taylor & Francis Journals, vol. 45(8), pages 953-962, March.
    19. A. Gómez-Águila & J. E. Trinidad-Segovia & M. A. Sánchez-Granero, 2022. "Improvement in Hurst exponent estimation and its application to financial markets," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 8(1), pages 1-21, December.
    20. J. Doyne Farmer, 2002. "Market force, ecology and evolution," Industrial and Corporate Change, Oxford University Press and the Associazione ICC, vol. 11(5), pages 895-953, November.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jjrfmx:v:18:y:2025:i:6:p:296-:d:1667069. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.