IDEAS home Printed from https://ideas.repec.org/a/gam/jjrfmx/v18y2025i4p197-d1628268.html
   My bibliography  Save this article

A Majority Voting Mechanism-Based Ensemble Learning Approach for Financial Distress Prediction in Indian Automobile Industry

Author

Listed:
  • Manoranjitham Muniappan

    (School of Computer Science and Engineering (SCOPE), Vellore Institute of Technology, Chennai 600127, India
    These authors contributed equally to this work.)

  • Nithya Darisini Paruvachi Subramanian

    (School of Computer Science and Engineering (SCOPE), Vellore Institute of Technology, Chennai 600127, India
    These authors contributed equally to this work.)

Abstract

Financial distress poses a significant risk to companies worldwide, irrespective of their nature or size. It refers to a situation where a company is unable to meet its financial obligations on time, potentially leading to bankruptcy and liquidation. Predicting distress has become a crucial application in business classification, employing both Statistical approaches and Artificial Intelligence techniques. Researchers often compare the prediction performance of different techniques on specific datasets, but no consistent results exist to establish one model as superior to others. Each technique has its own advantages and drawbacks, depending on the dataset. Recent studies suggest that combining multiple classifiers can significantly enhance prediction performance. However, such ensemble methods inherit both the strengths and weaknesses of the constituent classifiers. This study focuses on analyzing and comparing the financial status of Indian automobile manufacturing companies. Data from a sample of 100 automobile companies between 2013 and 2019 were used. A novel Firm-Feature-Wise three-step missing value imputation algorithm was implemented to handle missing financial data effectively. This study evaluates the performance of 11 individual baseline classifiers and all the 11 baseline algorithm’s combinations by using ensemble method. A manual ranking-based approach was used to evaluate the performance of 2047 models. The results of each combination are inputted to hard majority voting mechanism algorithm for predicting a company’s financial distress. Eleven baseline models are trained and assessed, with Gradient Boosting exhibiting the highest accuracy. Hyperparameter tuning is then applied to enhance individual baseline classifier performance. The majority voting mechanism with hyperparameter-tuned baseline classifiers achieve high accuracy. The robustness of the model is tested through k-fold Cross-Validation, demonstrating its generalizability. After fine-tuning the hyperparameters, the experimental investigation yielded an accuracy of 99.52%, surpassing the performance of previous studies. Furthermore, it results in the absence of Type-I errors.

Suggested Citation

  • Manoranjitham Muniappan & Nithya Darisini Paruvachi Subramanian, 2025. "A Majority Voting Mechanism-Based Ensemble Learning Approach for Financial Distress Prediction in Indian Automobile Industry," JRFM, MDPI, vol. 18(4), pages 1-31, April.
  • Handle: RePEc:gam:jjrfmx:v:18:y:2025:i:4:p:197-:d:1628268
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1911-8074/18/4/197/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1911-8074/18/4/197/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Nada Mselmi & Amine Lahiani & Taher Hamza, 2017. "Financial distress prediction: The case of French small and medium-sized firms," Post-Print hal-03529325, HAL.
    2. Kar Yan Tam & Melody Y. Kiang, 1992. "Managerial Applications of Neural Networks: The Case of Bank Failure Predictions," Management Science, INFORMS, vol. 38(7), pages 926-947, July.
    3. Altman, Edward I. & Haldeman, Robert G. & Narayanan, P., 1977. "ZETATM analysis A new model to identify bankruptcy risk of corporations," Journal of Banking & Finance, Elsevier, vol. 1(1), pages 29-54, June.
    4. Juliana Yim & Heather Mitchell, 2005. "A comparison of corporate distress prediction models in Brazil: hybrid neural networks, logit models and discriminant analysis," Nova Economia, Economics Department, Universidade Federal de Minas Gerais (Brazil), vol. 15(1), pages 73-93, January-A.
    5. Mselmi, Nada & Lahiani, Amine & Hamza, Taher, 2017. "Financial distress prediction: The case of French small and medium-sized firms," International Review of Financial Analysis, Elsevier, vol. 50(C), pages 67-80.
    6. Henri Theil, 1969. "On the use of Information Theory Concepts in the Analysis of Financial Statements," Management Science, INFORMS, vol. 15(9), pages 459-480, May.
    7. Scott, James, 1981. "The probability of bankruptcy: A comparison of empirical predictions and theoretical models," Journal of Banking & Finance, Elsevier, vol. 5(3), pages 317-344, September.
    8. Kahya, Emel & Theodossiou, Panayiotis, 1999. "Predicting Corporate Financial Distress: A Time-Series CUSUM Methodology," Review of Quantitative Finance and Accounting, Springer, vol. 13(4), pages 323-345, December.
    9. Nada Mselmi & Amine Lahiani & Taher Hamza, 2017. "Financial distress prediction: The case of French small and medium-sized firms," Post-Print hal-03380580, HAL.
    10. Tsai, Chih-Fong & Sue, Kuen-Liang & Hu, Ya-Han & Chiu, Andy, 2021. "Combining feature selection, instance selection, and ensemble classification techniques for improved financial distress prediction," Journal of Business Research, Elsevier, vol. 130(C), pages 200-209.
    11. Ohlson, Ja, 1980. "Financial Ratios And The Probabilistic Prediction Of Bankruptcy," Journal of Accounting Research, Wiley Blackwell, vol. 18(1), pages 109-131.
    12. Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-654, May-June.
    13. Stewart Jones & David Johnstone & Roy Wilson, 2017. "Predicting Corporate Bankruptcy: An Evaluation of Alternative Statistical Frameworks," Journal of Business Finance & Accounting, Wiley Blackwell, vol. 44(1-2), pages 3-34, January.
    14. Shumway, Tyler, 2001. "Forecasting Bankruptcy More Accurately: A Simple Hazard Model," The Journal of Business, University of Chicago Press, vol. 74(1), pages 101-124, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Şaban Çelik, 2013. "Micro Credit Risk Metrics: A Comprehensive Review," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 20(4), pages 233-272, October.
    2. Christian Lohmann & Steffen Möllenhoff & Thorsten Ohliger, 2023. "Nonlinear relationships in bankruptcy prediction and their effect on the profitability of bankruptcy prediction models," Journal of Business Economics, Springer, vol. 93(9), pages 1661-1690, November.
    3. Sanjay Sehgal & Ritesh Kumar Mishra & Ajay Jaisawal, 2021. "A search for macroeconomic determinants of corporate financial distress," Indian Economic Review, Springer, vol. 56(2), pages 435-461, December.
    4. Sumaira Ashraf & Elisabete G. S. Félix & Zélia Serrasqueiro, 2019. "Do Traditional Financial Distress Prediction Models Predict the Early Warning Signs of Financial Distress?," JRFM, MDPI, vol. 12(2), pages 1-17, April.
    5. Oz, Ibrahim Onur & Yelkenci, Tezer & Meral, Gorkem, 2021. "The role of earnings components and machine learning on the revelation of deteriorating firm performance," International Review of Financial Analysis, Elsevier, vol. 77(C).
    6. Khoja, Layla & Chipulu, Maxwell & Jayasekera, Ranadeva, 2019. "Analysis of financial distress cross countries: Using macroeconomic, industrial indicators and accounting data," International Review of Financial Analysis, Elsevier, vol. 66(C).
    7. Oliver Lukason & María-del-Mar Camacho-Miñano, 2019. "Bankruptcy Risk, Its Financial Determinants and Reporting Delays: Do Managers Have Anything to Hide?," Risks, MDPI, vol. 7(3), pages 1-15, July.
    8. Maurice Peat, 2001. "Bankruptcy Probability: A Theoretical and Empirical Examination," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 20, July-Dece.
    9. Maurice Peat, 2007. "Factors Affecting the Probability of Bankruptcy: A Managerial Decision Based Approach," Abacus, Accounting Foundation, University of Sydney, vol. 43(3), pages 303-324, September.
    10. Mark Clintworth & Dimitrios Lyridis & Evangelos Boulougouris, 2023. "Financial risk assessment in shipping: a holistic machine learning based methodology," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 25(1), pages 90-121, March.
    11. Vladislav V. Afanasev & Yulia A. Tarasova, 2022. "Default Prediction for Housing and Utilities Management Firms Using Non-Financial Data," Finansovyj žhurnal — Financial Journal, Financial Research Institute, Moscow 125375, Russia, issue 6, pages 91-110, December.
    12. Alexandra Horobet & Stefania Cristina Curea & Alexandra Smedoiu Popoviciu & Cosmin-Alin Botoroga & Lucian Belascu & Dan Gabriel Dumitrescu, 2021. "Solvency Risk and Corporate Performance: A Case Study on European Retailers," JRFM, MDPI, vol. 14(11), pages 1-34, November.
    13. ElBannan, Mona A., 2021. "On the prediction of financial distress in emerging markets: What matters more? Empirical evidence from Arab spring countries," Emerging Markets Review, Elsevier, vol. 47(C).
    14. Duc Hong Vo & Binh Ninh Vo Pham & Chi Minh Ho & Michael McAleer, 2019. "Corporate Financial Distress of Industry Level Listings in Vietnam," JRFM, MDPI, vol. 12(4), pages 1-17, September.
    15. John Nkwoma Inekwe, 2016. "Financial Distress, Employees’ Welfare and Entrepreneurship Among SMEs," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 129(3), pages 1135-1153, December.
    16. Inekwe, John Nkwoma & Jin, Yi & Valenzuela, Ma. Rebecca, 2018. "The effects of financial distress: Evidence from US GDP growth," Economic Modelling, Elsevier, vol. 72(C), pages 8-21.
    17. Vo, D.H. & Pham, B.V.-N. & Pham, T.V.-T. & McAleer, M.J., 2019. "Corporate Financial Distress of Industry Level Listings in an Emerging Market," Econometric Institute Research Papers EI2019-15, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    18. Viral Acharya & Sergei A. Davydenko & Ilya A. Strebulaev, 2012. "Cash Holdings and Credit Risk," The Review of Financial Studies, Society for Financial Studies, vol. 25(12), pages 3572-3609.
    19. Qunfeng LIAO & Seyed MEHDIAN, 2016. "Measuring Financial Distress And Predicting Corporate Bankruptcy: An Index Approach," Review of Economic and Business Studies, Alexandru Ioan Cuza University, Faculty of Economics and Business Administration, issue 17, pages 33-51, June.
    20. Youssef Zizi & Amine Jamali-Alaoui & Badreddine El Goumi & Mohamed Oudgou & Abdeslam El Moudden, 2021. "An Optimal Model of Financial Distress Prediction: A Comparative Study between Neural Networks and Logistic Regression," Risks, MDPI, vol. 9(11), pages 1-24, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jjrfmx:v:18:y:2025:i:4:p:197-:d:1628268. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.