IDEAS home Printed from https://ideas.repec.org/a/gam/jjrfmx/v16y2023i12p501-d1294197.html
   My bibliography  Save this article

Information Theory and the Pricing of Contingent Claims: An Alternative Derivation of the Black–Scholes–Merton Formula

Author

Listed:
  • Thomas P. Davis

    (FactSet Research Systems, Broadgate Quarter, London EC2A 2DQ, UK)

Abstract

This paper seeks to determine the best subjective probability to use to carry out expectation values of uncertain future cash flows with the smallest number of assumptions. This results in the unique distribution that guarantees no more information is present other than the stated assumptions. The result is a novel derivation of the well-known Black–Scholes equation without the need to introduce high-level mathematical machinery. This formalism fits nicely into introductory courses of finance, where the value of any financial instrument is given by the present value of uncertain future cash flows.

Suggested Citation

  • Thomas P. Davis, 2023. "Information Theory and the Pricing of Contingent Claims: An Alternative Derivation of the Black–Scholes–Merton Formula," JRFM, MDPI, vol. 16(12), pages 1-7, December.
  • Handle: RePEc:gam:jjrfmx:v:16:y:2023:i:12:p:501-:d:1294197
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1911-8074/16/12/501/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1911-8074/16/12/501/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Omid M. Ardakani, 2022. "Option pricing with maximum entropy densities: The inclusion of higher‐order moments," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 42(10), pages 1821-1836, October.
    2. Harrison, J. Michael & Pliska, Stanley R., 1981. "Martingales and stochastic integrals in the theory of continuous trading," Stochastic Processes and their Applications, Elsevier, vol. 11(3), pages 215-260, August.
    3. Cox, John C. & Ross, Stephen A., 1976. "The valuation of options for alternative stochastic processes," Journal of Financial Economics, Elsevier, vol. 3(1-2), pages 145-166.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hardeep Singh Mundi, 2023. "Risk neutral variances to compute expected returns using data from S&P BSE 100 firms—a replication study," Management Review Quarterly, Springer, vol. 73(1), pages 215-230, February.
    2. Jin Zhang & Yi Xiang, 2008. "The implied volatility smirk," Quantitative Finance, Taylor & Francis Journals, vol. 8(3), pages 263-284.
    3. Duffie, Darrell, 2003. "Intertemporal asset pricing theory," Handbook of the Economics of Finance, in: G.M. Constantinides & M. Harris & R. M. Stulz (ed.), Handbook of the Economics of Finance, edition 1, volume 1, chapter 11, pages 639-742, Elsevier.
    4. Chung, Keunsuk & Turnovsky, Stephen J., 2010. "Foreign debt supply in an imperfect international capital market: Theory and evidence," Journal of International Money and Finance, Elsevier, vol. 29(2), pages 201-223, March.
    5. Xiaowei Ding & Kay Giesecke & Pascal I. Tomecek, 2009. "Time-Changed Birth Processes and Multiname Credit Derivatives," Operations Research, INFORMS, vol. 57(4), pages 990-1005, August.
    6. Melenberg, B. & Werker, B.J.M., 1996. "On the Pricing of Options in Incomplete Markets," Discussion Paper 1996-19, Tilburg University, Center for Economic Research.
    7. Beißner, Patrick, 2013. "Coherent Price Systems and Uncertainty-Neutral Valuation," VfS Annual Conference 2013 (Duesseldorf): Competition Policy and Regulation in a Global Economic Order 80010, Verein für Socialpolitik / German Economic Association.
    8. Jouini, Elyes & Kallal, Hedi & Napp, Clotilde, 2001. "Arbitrage and viability in securities markets with fixed trading costs," Journal of Mathematical Economics, Elsevier, vol. 35(2), pages 197-221, April.
    9. Yu, Jun, 2015. "Catastrophe options with double compound Poisson processes," Economic Modelling, Elsevier, vol. 50(C), pages 291-297.
    10. Eckhard Platen & Martin Schweizer, 1998. "On Feedback Effects from Hedging Derivatives," Mathematical Finance, Wiley Blackwell, vol. 8(1), pages 67-84, January.
    11. Shane Miller, 2007. "Pricing of Contingent Claims Under the Real-World Measure," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 2-2007, January-A.
    12. David Heath & Simon Hurst & Eckhard Platen, 1999. "Modelling the Stochastic Dynamics of Volatility for Equity Indices," Research Paper Series 7, Quantitative Finance Research Centre, University of Technology, Sydney.
    13. Anna Aksamit & Tahir Choulli & Jun Deng & Monique Jeanblanc, 2013. "Non-Arbitrage up to Random Horizon for Semimartingale Models," Papers 1310.1142, arXiv.org, revised Feb 2014.
    14. Rongwen Wu & Michael C. Fu, 2003. "Optimal Exercise Policies and Simulation-Based Valuation for American-Asian Options," Operations Research, INFORMS, vol. 51(1), pages 52-66, February.
    15. Jouini, Elyes, 2001. "Arbitrage and control problems in finance: A presentation," Journal of Mathematical Economics, Elsevier, vol. 35(2), pages 167-183, April.
    16. Hull, John & White, Alan, 1995. "The impact of default risk on the prices of options and other derivative securities," Journal of Banking & Finance, Elsevier, vol. 19(2), pages 299-322, May.
    17. Jovanovic, Franck & Schinckus, Christophe, 2017. "Econophysics and Financial Economics: An Emerging Dialogue," OUP Catalogue, Oxford University Press, number 9780190205034.
    18. Marie Brière & Kamal Chancari, 2004. "Perception des risques sur les marchés, construction d'un indice élaboré à partir des smiles d'options et test de stratégies," Revue d'économie politique, Dalloz, vol. 114(4), pages 527-555.
    19. Mark Broadie & Jérôme Detemple, 1996. "Recent Advances in Numerical Methods for Pricing Derivative Securities," CIRANO Working Papers 96s-17, CIRANO.
    20. Wanxiao Tang & Jun Zhao & Peibiao Zhao, 2019. "Geometric No-Arbitrage Analysis in the Dynamic Financial Market with Transaction Costs," JRFM, MDPI, vol. 12(1), pages 1-17, February.

    More about this item

    Keywords

    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jjrfmx:v:16:y:2023:i:12:p:501-:d:1294197. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.