IDEAS home Printed from https://ideas.repec.org/a/gam/jjrfmx/v15y2022i6p238-d824638.html
   My bibliography  Save this article

The Generalized Gamma Distribution as a Useful RND under Heston’s Stochastic Volatility Model

Author

Listed:
  • Benzion Boukai

    (Department of Mathematical Sciences, Indiana University—Purdue University Indianapolis (IUPUI), Indianapolis, IN 46202, USA)

Abstract

We present the Generalized Gamma (GG) distribution as a possible risk neutral distribution (RND) for modeling European options prices under Heston’s stochastic volatility (SV) model. We demonstrate that under a particular reparametrization, this distribution, which is a member of the scale-parameter family of distributions with the mean being the forward spot price, satisfies Heston’s solution and hence could be used for the direct risk-neutral valuation of the option price under Heston’s SV model. Indeed, this distribution is especially useful in situations in which the spot’s price follows a negatively skewed distribution for which Black–Scholes-based (i.e., the log-normal distribution) modeling is largely inapt. We illustrate the applicability of the GG distribution as an RND by modeling market option data on three large market-index exchange-traded funds (ETF), namely the SPY, IWM and QQQ as well as on the TLT (an ETF that tracks an index of long-term US Treasury bonds). As of the writing of this paper (August 2021), the option chain of each of the three market-index ETFs shows a pronounced skew of their volatility ‘smile’, which indicates a likely distortion in the Black–Scholes modeling of such option data. Reflective of entirely different market expectations, this distortion in the volatility ‘smile’ appears not to exist in the TLT option data. We provide a thorough modeling of the option data we have on each ETF (with the 15 October 2021 expiration) based on the GG distribution and compare it to the option pricing and RND modeling obtained directly from a well-calibrated Heston’s SV model (both theoretically and also empirically, using Monte Carlo simulations of the spot’s price). All three market-index ETFs exhibited negatively skewed distributions, which are well-matched with those derived under the GG distribution as RND. The inadequacy of the Black–Scholes modeling in such instances, which involves negatively skewed distribution, is further illustrated by its impact on the hedging factor, delta, and the immediate implications to the retail trader. Similarly, the closely related Inverse Generalized Gamma distribution (IGG) is also proposed as a possible RND for Heston’s SV model in situations involving positively skewed distribution. In all, utilizing the Generalized Gamma distributions as possible RNDs for direct option valuations under the Heston’s SV is seen as particularly useful to the retail traders who do not have the numerical tools or the know-how to fine-calibrate this SV model.

Suggested Citation

  • Benzion Boukai, 2022. "The Generalized Gamma Distribution as a Useful RND under Heston’s Stochastic Volatility Model," JRFM, MDPI, vol. 15(6), pages 1-18, May.
  • Handle: RePEc:gam:jjrfmx:v:15:y:2022:i:6:p:238-:d:824638
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1911-8074/15/6/238/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1911-8074/15/6/238/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ben Boukai, 2020. "How Much Is Your Strangle Worth? On the Relative Value of the Strangle under the Black-Scholes Pricing Model," Applied Economics and Finance, Redfame publishing, vol. 7(4), pages 138-146, July.
    2. Bakshi, Gurdip & Cao, Charles & Chen, Zhiwu, 1997. "Empirical Performance of Alternative Option Pricing Models," Journal of Finance, American Finance Association, vol. 52(5), pages 2003-2049, December.
    3. Fischer Black, 1989. "How To Use The Holes In Black‐Scholes," Journal of Applied Corporate Finance, Morgan Stanley, vol. 1(4), pages 67-73, January.
    4. Cox, John C. & Ross, Stephen A., 1976. "The valuation of options for alternative stochastic processes," Journal of Financial Economics, Elsevier, vol. 3(1-2), pages 145-166.
    5. Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-654, May-June.
    6. Ben Boukai, 2020. "How much is your Strangle worth? On the relative value of the $\delta-$Symmetric Strangle under the Black-Scholes model," Papers 2003.03876, arXiv.org, revised May 2020.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ben Boukai, 2021. "The Generalized Gamma distribution as a useful RND under Heston's stochastic volatility model," Papers 2108.07937, arXiv.org, revised Aug 2021.
    2. René Garcia & Richard Luger & Eric Renault, 2000. "Asymmetric Smiles, Leverage Effects and Structural Parameters," Working Papers 2000-57, Center for Research in Economics and Statistics.
    3. Lim, Terence & Lo, Andrew W. & Merton, Robert C. & Scholes, Myron S., 2006. "The Derivatives Sourcebook," Foundations and Trends(R) in Finance, now publishers, vol. 1(5–6), pages 365-572, April.
    4. Sanjay K. Nawalkha & Xiaoyang Zhuo, 2020. "A Theory of Equivalent Expectation Measures for Contingent Claim Returns," Papers 2006.15312, arXiv.org, revised May 2022.
    5. Jin Zhang & Yi Xiang, 2008. "The implied volatility smirk," Quantitative Finance, Taylor & Francis Journals, vol. 8(3), pages 263-284.
    6. Duffie, Darrell, 2003. "Intertemporal asset pricing theory," Handbook of the Economics of Finance, in: G.M. Constantinides & M. Harris & R. M. Stulz (ed.), Handbook of the Economics of Finance, edition 1, volume 1, chapter 11, pages 639-742, Elsevier.
    7. Wu, Guojun & Xiao, Zhijie, 2002. "A generalized partially linear model of asymmetric volatility," Journal of Empirical Finance, Elsevier, vol. 9(3), pages 287-319, August.
    8. Kam C. Chan & Carl R. Chen & Peter P. Lung, 2010. "Business Cycles and Net Buying Pressure in the S&P 500 Futures Options," European Financial Management, European Financial Management Association, vol. 16(4), pages 624-657, September.
    9. Bates, David S., 2003. "Empirical option pricing: a retrospection," Journal of Econometrics, Elsevier, vol. 116(1-2), pages 387-404.
    10. Su, EnDer & Wen Wong, Kai, 2019. "Testing the alternative two-state options pricing models: An empirical analysis on TXO," The Quarterly Review of Economics and Finance, Elsevier, vol. 72(C), pages 101-116.
    11. Pena, Ignacio & Rubio, Gonzalo & Serna, Gregorio, 1999. "Why do we smile? On the determinants of the implied volatility function," Journal of Banking & Finance, Elsevier, vol. 23(8), pages 1151-1179, August.
    12. Chan, Kam C. & Cheng, Louis T. W. & Lung, Peter P., 2003. "Moneyness and the response of the implied volatilities to price changes: The empirical evidence from HSI options," Pacific-Basin Finance Journal, Elsevier, vol. 11(4), pages 527-553, September.
    13. Peter Christoffersen & Redouane Elkamhi & Bruno Feunou & Kris Jacobs, 2010. "Option Valuation with Conditional Heteroskedasticity and Nonnormality," The Review of Financial Studies, Society for Financial Studies, vol. 23(5), pages 2139-2183.
    14. F. Leung & M. Law & S. K. Djeng, 2024. "Deterministic modelling of implied volatility in cryptocurrency options with underlying multiple resolution momentum indicator and non-linear machine learning regression algorithm," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 10(1), pages 1-25, December.
    15. Bakshi, Gurdip & Cao, Charles & Chen, Zhiwu, 2000. "Pricing and hedging long-term options," Journal of Econometrics, Elsevier, vol. 94(1-2), pages 277-318.
    16. Yan, Shu, 2011. "Jump risk, stock returns, and slope of implied volatility smile," Journal of Financial Economics, Elsevier, vol. 99(1), pages 216-233, January.
    17. Lin, Shin-Hung & Huang, Hung-Hsi & Li, Sheng-Han, 2015. "Option pricing under truncated Gram–Charlier expansion," The North American Journal of Economics and Finance, Elsevier, vol. 32(C), pages 77-97.
    18. Nawalkha, Sanjay K & Zhuo, Xiaoyang, 2020. "A Theory of Equivalent Expectation Measures for Expected Prices of Contingent Claims," OSF Preprints hsxtu, Center for Open Science.
    19. Liu, Jun & Pan, Jun, 2003. "Dynamic derivative strategies," Journal of Financial Economics, Elsevier, vol. 69(3), pages 401-430, September.
    20. Jurczenko, Emmanuel & Maillet, Bertrand & Negrea, Bogdan, 2002. "Revisited multi-moment approximate option pricing models: a general comparison (Part 1)," LSE Research Online Documents on Economics 24950, London School of Economics and Political Science, LSE Library.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jjrfmx:v:15:y:2022:i:6:p:238-:d:824638. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.